Synthesis and hybridization properties of $\boldsymbol{\beta}$ - and α oligodeoxynucleotides containing β - and $\alpha-1-(3-C$-allyl-2-deoxy-D-erythro-pentofuranosyl)thymine and α-1-[3-C-(3-aminopropyl)-2-deoxy-d-erythro-pentofuranosyl]thymine

Pia N. Jørgensen, ${ }^{a}$ Ulrik S. Sørensen, $\dagger^{+}{ }^{a}$ Henrik M. Pfundheller, ${ }^{a}$ Carl E. Olsen ${ }^{b}$ and Jesper Wengel ${ }^{*, c}$
${ }^{a}$ Department of Chemistry, Odense University, DK-5230 Odense M, Denmark
${ }^{b}$ Department of Chemistry, The Royal Veterinary and Agricultural University, DK-1871
Frederiksberg C, Denmark
${ }^{c}$ Department of Chemistry, Chemical Laboratory II, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Abstract

Convergent synthesis of β - and $\alpha-1-(3-C$-allyl-2-deoxy-D-erythro-pentofuranosyl)thymine and their incorporation into β - and α-oligodeoxynucleotides (ODNs) is described. The thermal stabilities of duplexes formed between modified ODNs and complementary single-stranded DNA and RNA have been evaluated. In all cases stable duplexes are formed, but whereas β-ODNs containing β-3' $-C$-allylthymidine show moderately lowered thermal stability towards both DNA and RNA, α-ODNs containing $\alpha-3^{\prime}-C$ allylthymidine show significantly increased thermal stabilities compared with the corresponding β-ODN reference duplexes. Even more stable duplexes towards both DNA and RNA have been obtained using an α-ODN containing one α-1-[3-C-(3-aminopropyl)-2-deoxy-D-erythro-pentofuranosyl]thymine monomer.

Introduction

Synthesis of modified oligodeoxynucleotides (ODNs) for use in control of gene expression has been the subject of active research during the last few years. ${ }^{1}$ In order to improve the binding affinity, enzyme stability, cell-uptake, and other pharmacokinetic properties, a variety of oligonucleotide analogues have been synthesized and evaluated. ${ }^{2,3}$ In connection with a project directed towards the synthesis of new ODN analogues containing $3^{\prime}-C$-alkyl functionalities as attachment sites for $e . g$. intercalating agents or lipophilic carriers, we decided to synthesize $\quad 1$-(3-C-allyl-2-deoxy- β-D-erythro-pentofuranosyl)thymine $\mathbf{1 3}$ (β) (Scheme 1). The allyl group is suitable for diverse structural manipulations, and allows, e.g. easy access to both the $3^{\prime}-C$-(2-hydroxyethyl)- and the $3^{\prime}-C$-(3-hydroxypropyl)modified nucleosides by either oxidative cleavage followed by reduction or hydroboration followed by in situ oxidation. Additionally, it would be interesting to evaluate $1-(3-C$-allyl-2-deoxy- β-D-erythro-pentofuranosyl)thymine as a novel monomeric substitute in modified ODNs. Until recently, only a few examples of $3^{\prime}-C$-allyl-substituted nucleosides were known. 3^{\prime} -C-Allyl-2', 3^{\prime}-deoxynucleosides were obtained by addition of a 3 '-centred radical to allyltributyltin which proceeded in a stereoselective way to afford only the erythro-isomer corresponding to addition from the less hindered α-face of the free-radical intermediate. ${ }^{4}$ Recently, we have reported the synthesis of $3^{\prime}-C$ allyluridines by cerium-assisted Grignard additions of allylmagnesium bromide to 3^{\prime}-ketouridines. ${ }^{5}$ However, as in the majority of Grignard reactions on ketonucleosides, ${ }^{6}$ the nucleophilic addition occurred preferentially from the α-face due to steric hindrance from the base moiety. Based on these results we decided to use a convergent synthetic strategy, hoping to achieve a favourable ratio between the desired erythro- and the threo-configurated products. In addition, the possibility of

[^0]straightforward introduction of various nucleobases appealed to us. Recently, ODNs containing nucleoside monomers carrying aminoalkyl linkers tethered at the $1^{\prime}-C, 2^{\prime}-O, 3^{\prime}-O$ or $4^{\prime}-C$ positions of the carbohydrate moiety have been reported. ${ }^{7}$ Here we introduce an ODN containing one 3^{\prime} - C-aminopropylderivatized monomer synthesized from the parent $3^{\prime}-C$-allyl nucleoside.

Results and discussion

1-(3-C-Allyl-3,5-di- O-benzyl- β-d-ribofuranosyl)thymine ${ }^{8} \quad \mathbf{1}$ was prepared in six steps from $5^{\prime}-O$-silyl-protected $1,2-O-$ isopropylidene- α-D-ribofuranosid-3-ulose in an overall yield of 47%. The reaction included a stereoselective Grignard addition of allylmagnesium bromide and a $2^{\prime}-O$-acyl-assisted nitrogen glycosylation to afford exclusively the β-nucleoside. Unfortunately, free-radical deoxygenation ${ }^{9}$ of the 2^{\prime}-hydroxy group of compound 1 via the corresponding pentafluorophenyl thionocarbonate by $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of azoisobutyronitrile (AIBN) in hot benzene was unsuccessful in our hands, probably due to uncontrolled intramolecular free-radical cyclizations. To overcome this problem we decided to use 2-deoxy-D-ribose as the starting compound for the synthesis of amidite 16a (and 16b). Conversion of 2-deoxy-D-ribose into an anomeric mixture of methyl 2-deoxy-D-erythro-pentofuranoside was done under kinetic control as previously described. ${ }^{10}$ Reaction of methyl 2-deoxy-D-erythro-pentofuranoside with 1.03 mol equiv. of tertbutyldimethylsilyl chloride (TBDMSCl) and imidazole in dimethylformamide (DMF) ${ }^{11}$ afforded, after column chromatography, pure 5 - O-silylated α-anomer 2 (28% yield), the
corresponding β-anomer 3 (19% yield) and a fraction containing an anomeric mixture of the disilylated glycosides (9% yield). Assignment of the anomeric configuration was done by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ 2-D chemical-shift-correlation spectroscopy (COSY) and nuclear Overhauser effect (NOE) difference experiments. In an attempt to control the stereoselectivity of the nucleophilic addition of allylmagnesium bromide to give the erythroconfigurated product, the α-anomer $\mathbf{2}$ was selected. Oxidation of compound $\mathbf{2}$ with CrO_{3}-pyridine-acetic anhydride reagent ${ }^{12}$ gave in 84% yield the corresponding 3 -ulose 4 , which was used in the next step without further purification. Grignard addition of 1.0 mol equiv. of allylmagnesium bromide afforded the 3-C-allyl- α-D-erythro glycoside 5 in 16% yield, whereas the $3-C$-allyl-α-D-threo glycoside $\mathbf{6}$ was obtained in 50% yield. The stereochemistry of the Grignard products was confirmed by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOE difference experiments. Thus, the α-erythro configuration of product 5 was confirmed by observing NOEs between $\mathrm{H}-1$ and $\mathrm{H}-2 \beta(\sim 3 \%), 3-\mathrm{OH}$ and $\mathrm{H}-4(2 \%)$, and $3-\mathrm{OH}$ and $\mathrm{H}-2 \alpha(3 \%)$. Mutual NOEs between $3-\mathrm{OH}$ and $\mathrm{H}-2 \beta$ and lack of an NOE between $3-\mathrm{OH}$ and $\mathrm{H}-4$ confirmed the α-threo configuration of product 6 . These results clearly show that the stereochemical outcome of the Grignard addition was determined by the bulky group at the 5 -position and that no stereocontrolling effect was induced by the α-OMe substituent. In addition, our experiments indicated that no more than 1.0 mol equiv. of allylmagnesium bromide should be used in the Grignard reaction. Thus, reaction of 3 -ulose 4 with an excess of allylmagnesium bromide afforded a mixture of acyclic derivatives as a result of additional nucleophilic attack at the anomeric carbon atom. Deprotection of the furanosides 5 and 6 using tetrabutylammonium fluoride (TBAF) in tetrahydrofuran (THF) ${ }^{13}$ afforded the diols 7 and $\mathbf{8}$ in 91 and 82% yield, respectively. Subsequent acetylation of both the primary and the tertiary hydroxy groups using acetic anhydride in anhydrous pyridine in the presence of 4-(dimethylamino)pyridine (DMAP) afforded compounds $\mathbf{9}$ and $\mathbf{1 0}$ in 77 and 45% yield, respectively. Direct nitrogen glycosylation ${ }^{14}$ of $\mathbf{9}$ and $\mathbf{1 0}$ with thymine using N, O-bis(trimethylsilyl)acetamide (BSA) as silylating agent and trimethylsilyl trifluoromethanesulfonate (TMS triflate) as a Lewis acid in anhydrous 1,2-dichloroethane afforded inseparable anomeric mixtures of nucleosides 11 ($\beta: \alpha \sim 1: 2.3$) and $\mathbf{1 2}(\beta: \alpha \sim 1: 1.1)$ in 52 and 64% yield, respectively. Exchange of 1,2 -dichloroethane with the more polar solvent $\mathrm{CH}_{3} \mathrm{CN}$ in the direct glycosylation reaction of compound 9 with thymine improved the yield to 74% and reversed the ratio between the β - and α-anomer ($\beta: \alpha \sim 1.5: 1$). Contrary to the alternative convergent strategy starting from $5^{\prime}-O$-silylprotected 1,2-O-isopropylidene- α-D-ribofuranosid-3-ulose, ${ }^{8}$ this strategy gives access to both anomers which enables evaluation of β - as well as α-ODN analogues. In this context it is notable that α-DNA is interesting as a potential antisense agent as it forms a more stable duplex with complementary RNA than does the corresponding β-DNA strand, ${ }^{15}$ and is not cleaved by many nucleases. ${ }^{16}$
Deacetylation of the threo-anomers 12 using methanolic ammonia afforded the β-anomer 14a in 39% yield and the α anomer 14b in 44% yield after column chromatographic separation. These two novel nucleosides are currently being evaluated for biological activity. Treatment of the erythro anomers 11 with $\mathrm{CH}_{3} \mathrm{ONa}-\mathrm{CH}_{3} \mathrm{OH}$ afforded an inseparable anomeric mixture $\mathbf{1 3}$ in 81% yield. Dimethoxytritylation of mixture $\mathbf{1 3}$ in anhydrous THF-anhydrous pyridine, with AgNO_{3} as catalyst, ${ }^{17}$ afforded $1-[3-C$-allyl-2-deoxy-5-O-(4,4'-dimethoxytrityl)- β-D-erythro-pentofuranosyl]thymine 15 a in 47% yield, and $1-[3-C$ -allyl-2-deoxy-5-O-(4,4'-dimethoxytrityl)- α-d-erythro-pentofuranosyl]thymine 15b in 26% yield. The structural assignment of the β and α nucleosides was done by NOE difference experiments and one-dimensional ${ }^{1} \mathrm{H}$ NMR spectroscopy. The key mutual NOE between $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-4^{\prime}$ observed for the β-anomer 15a [irradiation of $\mathrm{H}-1^{\prime}$ gave an NOE-effect in $\mathrm{H}-4^{\prime}\left(3^{\circ} \%\right)$, while

$+$

$12 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ac}$
$\mathrm{g} \square 11 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ac}$
$\longrightarrow 13 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$

14b

Scheme 1 (a) CrO_{3}, Pyridine, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) 1.0 mol equiv. allylMgBr, $\mathrm{Et}_{2} \mathrm{O}$; (c) TBAF, THF; (d) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine; (e) A: thymine, BSA, TMS triflate, $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$; B: thymine, BSA, TMS triflate, $\mathrm{CH}_{3} \mathrm{CN}$; (f) NH_{3} in $\mathrm{CH}_{3} \mathrm{OH}$; (g) $\mathrm{CH}_{3} \mathrm{ONa}$ in $\mathrm{CH}_{3} \mathrm{OH}$; (h) DMTCl, AgNO_{3}, pyridine, THF; (i) $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{Cl}) \mathrm{NPr}_{2}^{\mathrm{i}}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{T}=$ thymin-1-yl
irradiation of H-4' gave an NOE-effect in H-1' (7\%)] was not seen for the α-anomer $\mathbf{1 5 b}$ for which an NOE between H-4' and H-6 (6%) was observed. These results were further supported by the relative chemical shifts of $\mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{b}$ and $\mathrm{H}-4^{\prime}$. The $\mathrm{H}-4^{\prime}$ signal of the α-anomer is shifted downfield relative to the signal of the β-anomer, causing the difference in the chemical shifts between the $\mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{b}$ and the $\mathrm{H}-4^{\prime}$ to be greater in the α-anomer than in the β-anomer. ${ }^{18-19}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of the β anomer 15a, the $\mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{b}$ and the $\mathrm{H}-4^{\prime}$ signals appeared with a chemical-shift difference of 1.04 ppm which was extended to 1.29 ppm for the α-anomer $\mathbf{1 5 b}$, caused by a downfield shift of the $\mathrm{H}-\mathbf{4}^{\prime}$. Phosphitylation ${ }^{20}$ of compound $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ by reaction with 2-cyanoethyl N, N-diisopropylphosphoramido-
chloridite in the presence of N, N-diisopropylethylamine (DIPEA) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the nucleoside phosphoramidites 16a in 75% yield and $\mathbf{1 6 b}$ in 77% yield, respectively, after column chromatographic purification and precipitation from light petroleum.

With the aim of evaluating the properties of $3^{\prime}-C$-allyl β-Dribo ODN-analogues, the phosphoramidite derivative 20 was synthesized (Scheme 2) from 1-(3-C-allyl-3,5-di-O-benzyl- β-dribofuranosyl)thymine $1 .{ }^{8}$ Debenzylation of compound 1 using BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ afforded nucleoside 17 in 73% yield. As expected, removal of the benzyl groups using H_{2} and $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$ as catalyst in absolute EtOH at room temperature caused concomitant reduction or the allylic double bond. Dimethoxytritylation of triol $\mathbf{1 7}$ using 1.2 mol equiv. of $4,4^{\prime}$ dimethoxytrityl chloride (DMTCl) in anhydrous pyridine afforded nucleoside 18 in 82% yield. This was followed by silylation of the free 2^{\prime}-hydroxy group using TBDMSCl in anhydrous DMF and imidazole as catalyst to afford compound 19 in 82% yield. Subsequent phosphitylation, as described above for the preparation of compound 16a, afforded the phosphoramidite $\mathbf{2 0}$ in 78% yield after column chromatographic purification and precipitation from light petroleum.

Scheme 2 (a) $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexane; (b) DMTCl, pyridine; (c) TBDMSCl, imidazole, DMF; (d) $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{Cl}) \mathrm{NPr}_{2}^{\mathrm{i}}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{T}=$ thymin-1-yl

The chemistry used to synthesize the phosphoramidite monomer 26, which was used on an automated DNA synthesizer to introduce a $3^{\prime}-C$-(3-aminopropyl) linker into an oligonucleotide, is shown in Scheme 3. Direct nitrogen glycosylation ${ }^{14}$ of furanoside 5 with thymine using BSA as silylating agent and TMS triflate as Lewis acid in $\mathrm{CH}_{3} \mathrm{CN}$ afforded an inseparable anomeric mixture 21 of the α - and β-nucleoside ($\alpha: \beta \sim 3: 1$) in 83% yield. Hydroboration of this mixture with $\mathrm{BH}_{3} \cdot 1,4$-oxathiane in THF followed by in situ oxidation with alkaline hydrogen peroxide gave $3^{\prime}-C$-(3-hydroxypropyl) nucleosides 22 in 63% yield. Mitsunobu ${ }^{21}$ reaction of alcohol 22 with phthalimide afforded the phthaloyl-protected primary amines $\mathbf{2 3}$ in 86% yield. Treatment of the protected bis-ether 23 with TBAF in THF removed the silyl groups in 33% yield and the deprotected nucleosides 24 were allowed to react with DMTCl in anhydrous THF containing anhydrous pyridine, with AgNO_{3} as catalyst, to protect the 5^{\prime}-hydroxy groups. At this stage, the α - and β-nucleosides were easily separated by silica gel chromatography to give 1-[2-deoxy-5-O-(4,4'-dimethoxy-trityl)-3-C-(phthalimidopropyl)- α-D-erythro-pentofuranosyl]thymine 25 in 43% yield and the corresponding β-anomer in 15% yield. The structural assignment of the α-and β-nucleoside was based on one-dimensional ${ }^{1} \mathrm{H}$ NMR analysis. Thus, for the β-anomer, the $\mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{b}$ and the $\mathrm{H}-4^{\prime}$ signals appeared with a chemical-shift difference of 0.91 ppm which was extended to 1.36 ppm for the α-anomer 25. The configuration of the $\alpha-$ anomer was further confirmed by a significant NOE of H-4' (5%) by irradiation of H-6. The α-anomer 25 was treated with 2-cyanoethyl N, N-diisopropylphosphoramidochloridite in the presence of DIPEA in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the phosphoramidite 26 in 41% yield. Owing to the low yield obtained for the β-anomer corresponding to compound 25 incorporation of this anomer awaits completion of an alternative synthetic strategy.

Scheme 3 (a) Thymine, BSA, TMS triflate, $\mathrm{CH}_{3} \mathrm{CN}$; (b) $\mathrm{BH}_{3} \cdot 1,4-$ oxathiane, THF; $\mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$; (c) pthalimide, $\mathrm{Ph}_{3} \mathrm{P}$, DEAD, THF; (d) TBAF, THF; (e) DMTCl, AgNO_{3}, pyridine, THF; (f) $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{Cl}) \mathrm{NPr}_{2}{ }_{2}, \quad$ DIPEA, $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2} . \quad \mathrm{T}=$ thymin-1-yl. PhthN = phthalimido.

Synthesis of DMT-on ODNs A-L (Table 1) was performed by use of standard phosphoramidite methodology on an automated DNA-synthesizer using the appropriate building blocks [16a, 16b, 26, α-thymidine 3'-O-2-(cyanoethyl)phosphoramidite and commercial thymidine $3^{\prime}-O-2$-(cyanoethyl)phosphoramidite]. The coupling efficiency of the modified phosphoramidites 16a, 16b, and 26 were approximately 40% (two times 24 min coupling) compared with $>99 \%$ for α-thymidine and standard phosphoramidites (2 min coupling). The coupling efficiency of the building block 20 was in all experiments below 5%. The low coupling yield obtained with compound $\mathbf{2 0}$ can be explained by the tertiary nature of the phosphitylated hydroxy group in connection with steric hindrance from the $2^{\prime}-O$-(tertbutyldimethylsilyl) group (compare with structures 16a, 16b and 26). No ODNs containing compound 20 could therefore be obtained. The 5^{\prime} - O-dimethoxytrityl-protected oligomers were removed from the solid support by treatment with conc. ammonia at room temperature for 72 h , which also removed the phosphate and nucleobase-protecting groups and the phthaloyl group in species L. Purification using disposable reversed-phase chromatography cartridges (which includes detritylation) afforded the unprotected oligomers $\mathbf{A}-\mathbf{L}$. The purity of the modified oligomers was confirmed by anion-exchange highperformance liquid chromatography (HPLC) analysis. The composition of the oligomers was verified by matrix-assisted laser desorption mass spectrometry (MALDI-MS), a powerful method for mass analysis of ligomers. ${ }^{22,23}$ The observed relative molecular masses correspond within experimental error to those calculated (Table 2).
The hybridization properties of the modified oligomers towards their complementary DNA and RNA strands were checked by UV melting point (T_{m}) measurement as described. ${ }^{24}$ The results are given in Table 1. Incorporation of 16a (monomer \mathbf{X}) once or twice in the middle of a 14 -mer (ODNs A-D) induces a minor destabilization of the duplex formed with complementary DNA ($\Delta T_{\mathrm{m}} \sim-1^{\circ} \mathrm{C}$ modification). However, when RNA is used as the complementary strand, the resulting duplexes are destabilized by -2.8 to $-4.0^{\circ} \mathrm{C}$ per modification. These results support the assumption that the monomer \mathbf{X} adopts a 2^{\prime}-endo conformation, as reported earlier for a similar nucleoside, ${ }^{25}$ which is favourable for DNA-DNA duplex form-

Table 1 Sequences and melting experiments of synthesized β - and α-ODNs.

Sequence		$T_{m}\left({ }^{\circ} \mathrm{C}\right)^{a}$	$\Delta T_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)^{a}$	$T_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)^{b}$	$\Delta T_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)^{\text {b }}$
5'-TTTTTTTTTTTTTT-3'	A	35.5		29.0	
5'-TTTTTTTXTTTTTT-3'	B	34.5	-1.0	25.0	-4.0
5'-TTTTTTXXTTTTTT-3'	C	34.0	-0.8	23.5	-2.8
5'-TTTTTXTTTXTTTT-3'	D	33.0	-1.3	23.0	-3.0
5'-TTTTTTTYTTTTTT-3'	E	18.5	-17.0		
5'-TTTTTTYYTTTTTT-3'	F	15.0	-10.3		
5'-TTTTTYTTTYTTTT-3'	G	14.5	-10.5		
$5^{\prime}-\alpha$-(TTTTTTTTTTTTTT) $\mathrm{C}-3^{\prime}$	H	38.0		43.5	
$5^{\prime}-\alpha$-(TTTTTTTYTTTTTT)C-3'	I	37.0	-1.0	40.0	-3.5
5^{\prime} - α-(TTTTTTYYTTTTTT) $\mathrm{C}-3^{\prime}$	J	37.0	-0.5	37.0	-3.3
$5^{\prime}-\alpha$-(TTTTYTTTYTTTTT)C-3'	K	37.0	-0.5	36.0	-3.8
$5^{\prime}-\alpha$-(TTTTTTZTTTTTT)C-3'	L	38.0	0.0	41.0	-2.5

$\mathrm{T}=$ thymidine monomer; $\mathrm{C}=2^{\prime}$-deoxycytidine monomer; $\mathbf{X}=\beta$-monomer derived from amidite $\mathbf{1 6 a} ; \mathbf{Y}=\alpha$-monomer derived from amidite $\mathbf{1 6 b}$; $\mathbf{Z}=\alpha$-3-C-3-aminopropyl monomer derived from amidite 26. $T_{\mathrm{m}}=$ melting temperature; $\Delta T_{\mathrm{m}}=$ change in T_{m} per modification compared with the corresponding reference duplex. ${ }^{a}$ Complexed with $\mathrm{dA}_{14} \cdot{ }^{b}$ Complexed with rA_{14}.

Table 2 Mass analysis of synthesized ODNs.

ODN	Calc. $[\mathrm{M}+\mathrm{H}]^{+}(m / z)$	Found $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$
\mathbf{A}	4198	4200
\mathbf{B}	4238	4241
C	4278	4280
D	4278	4280
\mathbf{E}	4238	4240
\mathbf{F}	4278	4280
G	4278	4487
\mathbf{H}	4487	4529
\mathbf{I}	4527	4565
\mathbf{J}	4567	4566
\mathbf{K}	4567	4545

ation whereas the conformation of the carbohydrate moiety in a DNA-RNA duplex is known to be 3^{\prime}-endo. ${ }^{26}$ As expected, incorporation of the α-monomer \mathbf{Y} derived from compound $\mathbf{1 6 b}$ into a β-ODN $(\mathbf{E}-\mathbf{G})$ results in a large destabilization of the duplex formed with complementary DNA. This further confirms the assigned configuration of the nucleosides. As mentioned, α-ODNs form thermally more stable duplexes with RNA than do β-ODNs. The melting experiments depicted in Table 1 show the same tendency as α-ODN values are on average $14.5^{\circ} \mathrm{C}$ higher towards complementary RNA than are those for the corresponding $\beta-$ ODN-RNA duplexes. However, incorporation of α-monomer \mathbf{Y} once or twice in the middle of a $\alpha-\mathrm{T}_{14}$ (ODNs $\mathbf{H}-\mathbf{K}$) induces a similar destabilizing effect ($\Delta T_{\mathrm{m}} \sim$ $-3.5^{\circ} \mathrm{C} /$ modification) on a duplex formed with complementary RNA as seen above for \mathbf{X} when incorporated in a β-strand. When DNA is used as the complementary strand, incorporation of \mathbf{Y} has only a minor effect on the hybridization properties of the modified α-ODNs. The hybridization obtained by modified β-ODNs with complementary DNA is similar to that obtained earlier for the corresponding $3^{\prime}-C$-(hydroxymethyl)thymidine. ${ }^{27}$

As depicted in Table 1, the hybridization properties of the ODN L containing one $3^{\prime}-C$-aminopropyl α-monomer \mathbf{Z} in the middle were the most promising obtained towards both complementary DNA and RNA as no (towards DNA) or only minor (towards RNA) destabilizing effect was observed. These results could originate from the cationic nature of the amino group possibly leading to favourable partial neutralization of the phosphate backbone.

In summary, synthesis of the novel β - and α-anomers of $3^{\prime}-C$ allylthymidine has been accomplished and these nucleosides have been incorporated into β - and α-ODNs. Incorporation of the β-anomer into β-ODNs and the α-anomer into α-ODNs have a similar impact on duplex formation with complementary DNA and RNA. The increased thermal stabilities observed for all the modified α-ODNs, compared with the unmodified T_{14},
suggest them to be promising as bioactive molecules. The most likely application of $3^{\prime}-C$-allylnucleosides, however, will be as a precursor for the synthesis of 3^{\prime}-C-(2-hydroxyethyl)- or 3^{\prime}-C-(3hydroxypropyl)nucleosides and their amine analogues. Interesting properties of the latter were demonstrated (ODN L) and further research in this direction seems justified.

Experimental

NMR spectra were recorded at 250 MHz for ${ }^{1} \mathrm{H}$ NMR and 62.9 MHz for ${ }^{13} \mathrm{C}$ NMR on a Bruker AC-250 spectrometer or at 500 MHz for ${ }^{1} \mathrm{H}$ NMR, 125 MHz for ${ }^{13} \mathrm{C}$ NMR and 202.3 MHz for ${ }^{31} \mathrm{P}$ NMR on a Varian Unity 500 spectrometer. Chemical shifts are in ppm relative to tetramethylsilane as internal standard (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) and relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard (${ }^{31} \mathrm{P}$ NMR). J Values are given in Hz. ${ }^{1} \mathrm{H}$ NMR peak assignments for compounds 2, 3, 5, 6, 14a, 14b, 15a, 15b, 17-19 and 21-25 were derived from ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY and/or NOE difference experiments. ${ }^{13} \mathrm{C}$ NMR peak assignments for compounds 3, 5, $\mathbf{6}$ and $\mathbf{1 7}$ were derived from intensive nuclei enhancement by polarization transfer (INEPT) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY experiments. Fast-atom bombardment (FAB) mass spectra were recorded on a Kratos MS 50 RF spectrometer. Microanalyses were performed at the Department of Chemistry, University of Copenhagen. The silica gel used for column chromatography ($0.040-0.063 \mathrm{~mm}$) was purchased from Merck. ODNs were synthesized on an Assembler Gene Special ${ }^{\circledR}$ DNA-Synthesizer (Pharmacia Biotech). Purification of $5^{\prime}-O$-DMT-on ODNs was accomplished using disposable Oligopurification Cartridges (COP, Cruachem). MALDI-MS was performed in positive mode on a Micromass TofSpec E mass spectrometer using a matrix of diammonium citrate and 2,6 -dihydroxyacetophenone. Analytical anion-exchange HPLC (RESOURCE ${ }^{\mathrm{TM}} \mathrm{Q}, 1 \mathrm{~cm}^{3}$, Pharmacia Biotech) was performed on a Waters Delta Prep 3000 Preparative Chromatography System. Melting profiles of duplexes were obtained on a Perkin-Elmer UV/VIS spectrometer fitted with a PTP-6 Peltiér temperature-programming element. The reference oligonucleotide (rA_{14}) was purchased from DNA Technology ApS, Aarhus, Denmark. Light petroleum refers to the fraction with distillation range $60-80^{\circ} \mathrm{C}$.

Methyl 5-O-(tert-butyldimethylsilyl)-2-deoxy- α-D-erythropentofuranoside 2 and methyl 5-O-(tert-butyldimethylsilyl)-2-deoxy- β-D-erythro-pentofuranoside 3
An anomeric mixture of methyl 2-deoxy-D-erythro-pentofuranoside ${ }^{10}(51.32 \mathrm{~g}, 0.35 \mathrm{mmol}$) and imidazole ($57.06 \mathrm{~g}, 0.84$ mol) was dissolved in anhydrous DMF ($400 \mathrm{~cm}^{3}$) under argon. TBDMSCl $(58.02 \mathrm{~g}, 0.36 \mathrm{~mol})$ as a solution in anhydrous DMF ($100 \mathrm{~cm}^{3}$) was added dropwise over a period of 1 h . After 5 h , the reaction mixture was concentrated under reduced pressure. Purification by silica gel column chromatography ($0-25 \%$

EtOAc in light petroleum) afforded α-anomer $2(25.83 \mathrm{~g}, 28 \%)$ as the less polar compound, stereoisomer $3(17.84 \mathrm{~g}, 19 \%)$ and a fraction of the diprotected glycoside ($12.29 \mathrm{~g}, 9 \%$).

Compound 2: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.64$ and $-5.42\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $18.13\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.72\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.96(\mathrm{C}-2), 54.60\left(\mathrm{OCH}_{3}\right)$, 63.63 (C-5), 73.03 (C-3), 87.69 (C-4) and $105.50(\mathrm{C}-1)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.02\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.85\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.91-$ $2.15\left(\mathrm{~m}, 2 \mathrm{H}_{2} \mathrm{H}_{2}-2\right), 2.84(\mathrm{~d}, J 10.4,1 \mathrm{H}, \mathrm{OH}), 3.34(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.53\left(\mathrm{dd}, J 4.8\right.$ and $\left.10.9,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5\right), 3.70(\mathrm{dd}, J 3.6$ and $10.9,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-5$), 4.05-4.09 (m, $1 \mathrm{H}, \mathrm{H}-4$), 4.11-4.18 (m, $1 \mathrm{H}, \mathrm{H}-$ $3)$ and $5.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$.

Compound 3: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.46$ and $-5.41\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.27$ $\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 25.88\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.93(\mathrm{C}-2), 54.98\left(\mathrm{OCH}_{3}\right), 65.01}\right.$ $(\mathrm{C}-5), 73.63(\mathrm{C}-3), 85.66(\mathrm{C}-4)$ and $105.02(\mathrm{C}-1) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 0.08 [s, $6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$], $0.91\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 2.06 (ddd, $J 5.3,6.6$ and $13.3,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-2$), 2.22 (ddd, $J 2.1,6.8$ and $13.3,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-2$), $3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.54(\mathrm{dd}, J 8.0$ and 9.7, $1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5$), $3.75-3.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-5\right.$ and $\left.\mathrm{H}-4\right)$, 4.42-4.44 (m, $1 \mathrm{H}, \mathrm{H}-3$) and 5.06 (dd, $J 2.1$ and $5.3,1 \mathrm{H}, \mathrm{H}-1$).
Anomeric mixture of compounds 2 and 3: FAB-MS $m / z 261$ [$\mathrm{M}-\mathrm{H}]^{-}$(Found: C, 54.74; H, 9.64. Calc. for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}$: C, 54.92; H, 9.99\%).

Methyl 5-O-(tert-butyldimethylsily)-2-deoxy- α-D-glycero-pento-furanoside-3-ulose 4
To a suspension of $\mathrm{CrO}_{3}(5.00 \mathrm{~g}, 50.0 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$ were added anhydrous pyridine ($8.1 \mathrm{~cm}^{3}, 0.10$ $\mathrm{mol})$ and methyl glycoside $2(5.86 \mathrm{~g}, 22.3 \mathrm{mmol})$ followed by $\mathrm{Ac}_{2} \mathrm{O}\left(4.7 \mathrm{~cm}^{3}, 49.7 \mathrm{mmol}\right)$. The reaction mixture was stirred under argon for 4 h at room temp. EtOAc $\left(500 \mathrm{~cm}^{3}\right)$ was added and the mixture was filtered through a silica gel column. Concentration of the organic phase under reduced pressure afforded title keto glycoside $\mathbf{4}$ as a pale yellow oil ($4.77 \mathrm{~g}, 82 \%$) which was used without further purification in the next step; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.70$ and $5.51\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.17\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 25.70}\right.$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 44.18(\mathrm{C}-2), 54.82\left(\mathrm{OCH}_{3}\right), 62.25(\mathrm{C}-5), 78.81(\mathrm{C}-4)$, $104.80(\mathrm{C}-1)$ and $212.28(\mathrm{C}-3) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.04$ and 0.05 $\left[2 \times \mathrm{s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.86\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.33-2.60(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{H}_{2}-2\right), 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83-3.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{2}-5\right.$ and $\left.\mathrm{H}-4\right)$ and $5.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$.

Methyl 3-C-allyl-5-O-(tert-butyldimethylsilyl)-2-deoxy- α-D-erythro-pentofuranoside 5 and methyl 3-C-allyl-5-O-(tert-butyl-dimethylsilyl)-2-deoxy- α-D-threo-pentofuranoside 6
Compound 4 ($4.29 \mathrm{~g}, 16.46 \mathrm{mmol}$) was coevaporated with anhydrous toluene $\left(2 \times 25 \mathrm{~cm}^{3}\right)$ and dissolved under argon in anhydrous $\mathrm{Et}_{2} \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, a 1 m solution of allylmagnesium bromide in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ (16.5 $\mathrm{cm}^{3}, 16.5 \mathrm{mmol}$) was added dropwise and the mixture was stirred for 16 h at room temp. The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(400 \mathrm{~cm}^{3}\right)$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 250 \mathrm{~cm}^{3}\right)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification by silica gel column chromatography ($0-3 \% \mathrm{EtOAc}$ in light petroleum, $\mathrm{v} / \mathrm{v})$ afforded erythro product $5(789 \mathrm{mg}, 16 \%)$ as the less polar compound and its threo stereoisomer $6(2.51 \mathrm{~g}, 50 \%)$.

Compound 5: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.65$ and $-5.49\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.10$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.81\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 38.67(\mathrm{C}-2), 44.71\left(\mathrm{CH}_{2}\right), 54.90$ $\left(\mathrm{OCH}_{3}\right), 62.57(\mathrm{C}-5), 79.88(\mathrm{C}-3), 89.20(\mathrm{C}-4), 104.93(\mathrm{C}-1)$, $117.30\left(=\mathrm{CH}_{2}\right)$ and $134.49(=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.06$ and 0.07 $\left[2 \times \mathrm{s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.89\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.88-1.93(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{a}}-2\right), 2.14\left(\mathrm{dd}, J 5.2\right.$ and $\left.13.2,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-2\right), 2.36-2.55(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.66-3.69(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{2}-5\right), 4.05-4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.05-5.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $=\mathrm{CH}_{2}{ }^{\mathrm{a}}$), 5.12-5.15 (m, 1 H, $\left.=\mathrm{CH}_{2}{ }^{\mathrm{b}}\right)$ and $5.93-6.10(\mathrm{~m}, 1 \mathrm{H}$, $=\mathrm{CH}$) (Found: C, 59.71; H, 9.88. Calc. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$: C, 59.56; H, 10.00\%).

Compound 6: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.61$ and $5.49\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.12$ $\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 25.75\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 44.27\left(\mathrm{CH}_{2}\right), 47.10(\mathrm{C}-2), 55.09}\right.$ $\left(\mathrm{OCH}_{3}\right), 62.42(\mathrm{C}-5), 80.64(\mathrm{C}-3), 81.69(\mathrm{C}-4), 103.93(\mathrm{C}-1)$,
$118.24\left(=\mathrm{CH}_{2}\right)$ and $133.80(=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.11[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.91\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.01(\mathrm{dd}, J 2.9$ and $13.8,1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{a}}-2\right), 2.17\left(\mathrm{dd}, J 5.6\right.$ and $\left.13.8,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-2\right), 2.37-2.50(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.78-3.81(\mathrm{~m}, 1 \mathrm{H}$, H-4), 3.93-3.95 (m, 2 H, H2-5), 5.07-5.11 (m, 2 H, H-1 and $=\mathrm{CH}_{2}{ }^{\mathrm{a}}$), $5.15-5.16\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}_{2}{ }^{\mathrm{b}}\right)$ and $5.85-5.99(\mathrm{~m}, 1 \mathrm{H}$, $=\mathrm{CH}$); FAB-MS m/z $303[\mathrm{M}+\mathrm{H}]^{+}$(Found: C, 59.37; H, 9.60%).

Methyl 3-C-allyl-2-deoxy- α-D-erythro-pentofuranoside 7
Compound 5 ($1.08 \mathrm{~g}, 3.57 \mathrm{mmol}$) was dissolved in anhydrous THF ($15 \mathrm{~cm}^{3}$) under argon. 1.1 m TBAF in THF ($3.2 \mathrm{~cm}^{3}, 3.57$ mmol) was added and the mixture was stirred for 15 min . EtOAc $\left(70 \mathrm{~cm}^{3}\right)$ was added and the organic phase was washed with saturated aq. $\mathrm{NaHCO}_{3}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The water phase was extracted with $\mathrm{EtOAc}\left(60 \mathrm{~cm}^{3}\right)$, and the organic phases were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification using silica gel column chromatography ($20 \% \mathrm{EtOAc}$ in light petroleum) afforded title diol 7 as an oil ($612 \mathrm{mg}, 91 \%$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 38.76(\mathrm{C}-2), 44.95\left(\mathrm{CH}_{2}\right), 54.92$ $\left(\mathrm{OCH}_{3}\right), 61.99(\mathrm{C}-5), 79.41(\mathrm{C}-3), 89.20(\mathrm{C}-4), 104.53(\mathrm{C}-1)$, $117.79\left(=\mathrm{CH}_{2}\right)$ and $133.72(=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.00-2.03(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{2}-2\right), 2.27-2.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.40(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 3.52-3.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-5\right), 4.14(\mathrm{dd}, J 3.7$ and $4.9,1$ $\mathrm{H}, \mathrm{H}-4), 5.09-5.17\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1\right.$ and $\left.=\mathrm{CH}_{2}\right)$ and $5.89-6.06(\mathrm{~m}, 1$ $\mathrm{H},=\mathrm{CH})$ (Found: C, 57.60; H, 8.47. Calc. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 57.43$; H, 8.57%).

Methyl 3-C-allyl-2-deoxy- α-d-threo-pentofuranoside 8

Compound 6 ($739 \mathrm{mg}, 2.44 \mathrm{mmol}$) was dissolved in anhydrous THF ($10 \mathrm{~cm}^{3}$) under argon. 1.1 м TBAF in THF ($2.2 \mathrm{~cm}^{3}$, 2.4 mmol) was added and the mixture was stirred for 15 min . EtOAc $\left(40 \mathrm{~cm}^{3}\right)$ was added and the organic phase was washed with saturated aq. $\mathrm{NaHCO}_{3}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The water phase was extracted with EtOAc $\left(40 \mathrm{~cm}^{3}\right)$, and the organic phases were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification using silica gel column chromatography (20% EtOAc in light petroleum) afforded title diol $\mathbf{8}$ as an oil $(377 \mathrm{mg}, 82 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 43.77\left(\mathrm{CH}_{2}\right), 47.49(\mathrm{C}-2), 55.23$ $\left(\mathrm{OCH}_{3}\right), 61.23(\mathrm{C}-5), 80.82(\mathrm{C}-3), 81.87(\mathrm{C}-4), 103.81(\mathrm{C}-1)$, $119.18\left(=\mathrm{CH}_{2}\right)$ and $133.11(=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.04(\mathrm{dd}, J 2.9$ and $14.0,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-2$), 2.20 (dd, $J 5.64$ and $14.0,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-2$), 2.43-2.47 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80-$ 3.82 (m, 1 H, H-4), 3.93-3.94 (m, 2 H, H2-5), 5.13-5.17 (m, 2 H , $\mathrm{H}-1$ and $\left.=\mathrm{CH}_{2}{ }^{\mathrm{a}}\right), 5.20-5.21\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}_{2}{ }^{\mathrm{b}}\right)$ and $5.83-6.00(\mathrm{~m}, 1$ $\mathrm{H},=\mathrm{CH})$; FAB-MS $m / z 187[\mathrm{M}-\mathrm{H}]^{-}$.

Methyl 3,5-di-O-acetyl-3-C-allyl-2-deoxy- α-D-erythropentofuranoside 9

To a solution of compound $7(1.71 \mathrm{~g}, 9.09 \mathrm{mmol})$ in anhydrous pyridine $\left(30 \mathrm{~cm}^{3}\right)$ under argon were added DMAP $(1.11 \mathrm{~g}, 9.10$ $\mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}\left(6.01 \mathrm{~cm}^{3}, 54.54 \mathrm{mmol}\right)$. After stirring of the mixture for 48 h at room temperature, the solvent was evaporated off and saturated aq. $\mathrm{NaHCO}_{3}\left(80 \mathrm{~cm}^{3}\right)$ was added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 125 \mathrm{~cm}^{3}\right)$, and the organic phases were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Silica gel column chromatography ($10-30 \%$ EtOAc in light petroleum) gave title diacetate $9(1.90 \mathrm{~g}, 77 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.75$ and $21.53\left(2 \times \mathrm{CH}_{3}\right)$, $37.23\left(\mathrm{CH}_{2}\right), 44.66(\mathrm{C}-2), 54.98\left(\mathrm{OCH}_{3}\right), 63.22(\mathrm{C}-5), 81.69(\mathrm{C}-$ 4), $87.25(\mathrm{C}-3), 103.35(\mathrm{C}-1), 118.87\left(=\mathrm{CH}_{2}\right), 131.90(=\mathrm{CH})$ and 170.24 and $170.49\left(2 \times \mathrm{COCH}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.02$ and $2.09(2 \mathrm{~s}$, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), 2.25-2.45 (m, 3 H, H2-2 and $\mathrm{CH}_{2}{ }^{\mathrm{a}}$), $2.99(\mathrm{dd}, J$ 7.4 and $14.5,1 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{b}}$), $3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.20(\mathrm{dd}, J 7.0$ and $11.6,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5$), 4.44 (dd, J 2.9 and $7.0,1 \mathrm{H}, \mathrm{H}-4$), 4.57 (dd, $J 2.9$ and $\left.11.6,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-5\right), 5.03(\mathrm{dd}, J 2.3$ and $4.9,1 \mathrm{H}, \mathrm{H}-1)$, $5.07-5.10\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}_{2}{ }^{\mathrm{a}}\right), 5.14-5.15\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}_{2}{ }^{\mathrm{b}}\right)$ and 5.64 $5.80(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH})$; FAB-MS $m / z 272[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 3,5-di-O-acetyl-3-C-allyl-2-deoxy- α-d-threopentofuranoside 10

To a solution of compound $\mathbf{8}(2.92 \mathrm{~g}, 1.55 \mathrm{mmol})$ in anhydrous pyridine ($5 \mathrm{~cm}^{3}$) under argon were added DMAP ($195 \mathrm{mg}, 1.6$ $\mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}\left(0.68 \mathrm{~cm}^{3}, 6.20 \mathrm{mmol}\right)$. After stirring of the mixture for 48 h at room temperature, additional $\mathrm{Ac}_{2} \mathrm{O}(0.68$ $\mathrm{cm}^{3}, 6.20 \mathrm{mmol}$) was added. The reaction mixture was stirred for another 72 h , the solvent was evaporated off, and saturated aq. $\mathrm{NaHCO}_{3}\left(15 \mathrm{~cm}^{3}\right)$ was added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 25 \mathrm{~cm}^{3}\right)$, and the organic phases were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Silica gel column chromatography (30% EtOAc in light petroleum, v/v) gave title diacetate $\mathbf{1 0}$ (191 mg , $45 \%)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.81$ and $21.58\left(2 \times \mathrm{CH}_{3}\right), 40.05$ and 44.74 $\left(\mathrm{CH}_{2}\right.$ and $\left.\mathrm{C}-2\right), 54.93\left(\mathrm{OCH}_{3}\right), 63.61(\mathrm{C}-5), 81.06(\mathrm{C}-4), 87.82$ $(\mathrm{C}-3), 103.59(\mathrm{C}-1), 119.34\left(=\mathrm{CH}_{2}\right), 131.75(=\mathrm{CH})$ and 169.65 and $170.72\left(2 \times \mathrm{COCH}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.00$ and $2.10(2 \mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{3}\right), 2.33\left(\mathrm{dd}, J 1.7\right.$ and $\left.14.9,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-2\right), 2.65(\mathrm{dd}, J 5.7$ and $\left.15.0,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-2\right), 2.65-2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}{ }^{\text {a }}\right.$), $3.05-3.13(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{b}}$), $3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12-4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-5\right)$, $4.38-$ $4.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.05-5.17\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1\right.$ and $\left.=\mathrm{CH}_{2}\right)$ and $5.67-$ $5.81(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH})$.

1-(3,5-Di- O-acetyl-3-C-allyl-2-deoxy- $\alpha, \boldsymbol{\beta}$-D-erythropentofuranosyl)thymine 11

Method A. Methyl glycoside $9(1.79 \mathrm{~g}, 6.57 \mathrm{mmol})$ and thymine ($1.66 \mathrm{~g}, 13.14 \mathrm{mmol}$) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}\left(100 \mathrm{~cm}^{3}\right)$ under argon and BSA $\left(9.75 \mathrm{~cm}^{3}, 39.45\right.$ mmol) was added. The mixture was refluxed for 15 min at $78^{\circ} \mathrm{C}$. The resulting clear mixture was allowed to cool to room temperature and TMS triflate $\left(1.83 \mathrm{~cm}^{3}, 9.20 \mathrm{mmol}\right)$ was added dropwise over a period of 10 min . After being stirred for 48 h at room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 cm^{3}) and poured into ice-water ($50 \mathrm{~cm}^{3}$) saturated with NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 150 \mathrm{~cm}^{3}\right)$, and the organic phase was combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification using silica gel column chromatography ($10-30 \%$ EtOAc in light petroleum) afforded an anomeric mixture of the β - and α-nucleoside 11 ($\beta: \alpha ; 1: 2.3$) ($1.25 \mathrm{~g}, 52 \%$).

Method B. To a stirred suspension of the methyl glycoside 9 ($901 \mathrm{mg}, 3.32 \mathrm{mmol}$) and thymine ($843 \mathrm{mg}, 6.68 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}\left(30 \mathrm{~cm}^{3}\right)$ under argon at room temperature was dropwise added BSA ($5 \mathrm{~cm}^{3}, 20.23 \mathrm{mmol}$). The mixture was stirred for 1 h until clearness was attained. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$, and TMS triflate ($0.95 \mathrm{~cm}^{3}, 5.25 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 72 h at room temperature, then was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$, and the reaction was quenched with saturated aq. $\mathrm{NaHCO}_{3}(2 \times 50$ $\left.\mathrm{cm}^{3}\right)$. After being washed with water ($2 \times 50 \mathrm{~cm}^{3}$), the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification using silica gel column chromatography ($0-1 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded an anomeric mixture of the β - and α-nucleoside $11(\beta: \alpha ; 1.5: 1)(894 \mathrm{mg}, 74 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 12.41 and $12.45\left(2 \times \mathrm{CH}_{3}\right), \quad 20.70, \quad 21.52$ and 21.59 $\left(4 \times \mathrm{COCH}_{3}\right), 35.75$ and $36.05\left(2 \times \mathrm{C}-2^{\prime}\right), 42.85$ and 43.62 $\left(2 \times \mathrm{CH}_{2}{ }^{\prime}\right), 62.79$ and $63.05\left(2 \times \mathrm{C}-5^{\prime}\right), 82.24,83.92,84.04$, $85.76,88.49$ and $88.68\left(2 \times \mathrm{C}-1^{\prime},-3^{\prime}\right.$ and $\left.-4^{\prime}\right), 109.55$ and 111.04 $(2 \times \mathrm{C}-5), 119.41$ and $119.53\left(2 \times=\mathrm{CH}_{2}{ }^{\prime}\right), 131.03$ and 131.16 $\left(2 \times=\mathrm{CH}^{\prime}\right), 134.48$ and $135.17(2 \times \mathrm{C}-6), 150.39$ and 150.48 ($2 \times \mathrm{C}-2$), 163.81 and $164.12(2 \times \mathrm{C}-4)$ and 169.71, 169.92 and $170.10\left(4 \times \mathrm{COCH}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.94,1.96,2.07$ and $2.13(4 \mathrm{~s}$, $\left.2 \times \mathrm{CH}_{3}, 4 \times \mathrm{COCH}_{3}\right), 2.36-2.85\left(\mathrm{~m}, 2 \times \mathrm{H}_{2}-2\right.$ and $\left.2 \times \mathrm{CH}_{2}{ }^{\prime \mathrm{a}}\right)$, 3.08-3.29 (m, $2 \times \mathrm{CH}_{2}{ }^{\text {b }}$), 4.11-4.19 (m, $2 \times \mathrm{H}-4^{\prime}$), 4.33-4.41 and 4.69-4.72 ($\left.2 \mathrm{~m}, 2 \times \mathrm{H}_{2}-5^{\prime}\right), 5.00-5.17\left(\mathrm{~m}, 2 \times=\mathrm{CH}_{2}{ }^{\prime}\right), 5.63-$ $5.75\left(\mathrm{~m}, 2 \times=\mathrm{CH}^{\prime}\right), 6.18-6.27\left(\mathrm{~m}, 2 \times \mathrm{H}-1^{\prime}\right), 7.36$ and $7.39(2 \mathrm{~s}$, $2 \times \mathrm{H}-6)$ and 9.99 and $10.03(2 \mathrm{~s}, 2 \times \mathrm{NH})$; EI-MS $m / z 366\left[\mathrm{M}^{+}\right.$, 25%] (Found: C, $55.54 ; \mathrm{H}, 6.17 ; \mathrm{N}, 7.31$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}$: C, $55.73 ; \mathrm{H}, 6.05 ; \mathrm{N}, 7.65 \%$).

1-(3,5-Di-O-acetyl-3-C-allyl-2-deoxy- α, β-d-threopentofuranosyl)thymine 12

Method A. Used amounts. Methyl glycoside $\mathbf{1 0}$ ($129 \mathrm{mg}, 0.47$ mmol), thymine ($120 \mathrm{mg}, 0.95 \mathrm{mmol}$), anhydrous $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ $\left(7 \mathrm{~cm}^{3}\right)$, BSA $\left(0.70 \mathrm{~cm}^{3}, 2.84 \mathrm{mmol}\right)$ and TMS triflate $\left(0.13 \mathrm{~cm}^{3}\right.$, 0.65 mmol). Purification using preparative TLC (PLC) (2% $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, double run) afforded an anomeric mixture of the β - and α-nucleoside $\mathbf{1 2}(112 \mathrm{mg}, 64 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.33$ and $12.44\left(2 \times \mathrm{CH}_{3}\right), 20.66,20.68,21.46$ and 21.66 $\left(4 \times \mathrm{COCH}_{3}\right), 37.99,38.03,40.52$ and $41.65\left(2 \times \mathrm{C}-2^{\prime}\right.$ and $\left.\mathrm{CH}_{2}{ }^{\prime}\right)$, 62.64 and $63.37\left(2 \times \mathrm{C}-5^{\prime}\right), 83.13,83.59,84.08,86.38,86.81$ and $88.39\left(2 \times \mathrm{C}-1^{\prime},-3^{\prime}\right.$ and $\left.-4^{\prime}\right), 110.46$ and $110.95(2 \times \mathrm{C}-5)$, 120.31 and $120.67\left(2 \times=\mathrm{CH}_{2}{ }^{\prime}\right), 130.55$ and $131.01(2 \times$ $\left.=\mathrm{CH}^{\prime}\right), 134.63$ and $136.00(2 \times \mathrm{C}-6), 150.31$ and $150.34(2 \times$ $\mathrm{C}-2), 163.84$ and $164.01(2 \times \mathrm{C}-4)$ and $169.23,169.74,170.43$ and $170.60\left(4 \times \mathrm{COCH}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.86,1.87,1.93,2.00,2.04$ and $2.05\left(6 \mathrm{~s}, 2 \times \mathrm{CH}_{3}, 4 \times \mathrm{COCH}_{3}\right), 2.35(\mathrm{dd}, J 7.6$ and 15.0 , $\left.\mathrm{CH}_{2}{ }^{\prime \mathrm{a}}\right), 2.62-2.95\left(\mathrm{~m}, 2 \times \mathrm{H}_{2}-2^{\prime}\right.$ and $\mathrm{CH}_{2}{ }^{\text {'b }}$), $3.16(\mathrm{dd}, J 6.6$ and 15.0, $\mathrm{CH}_{2}{ }^{\prime}$), 4.07-4.15 (m, $\mathrm{H}_{2}-4^{\prime}$), 4.38-4.43 (m, $\left.\mathrm{H}_{2}-5^{\prime}\right), 5.10-$ $5.25\left(\mathrm{~m}, 2 \times=\mathrm{CH}_{2}{ }^{\prime}\right), 5.61-5.77\left(\mathrm{~m}, 2 \times=\mathrm{CH}^{\prime}\right), 5.99-6.06(\mathrm{~m}$, $\left.2 \times \mathrm{H}-1^{\prime}\right), 7.04$ and $7.35(2 \mathrm{~s}, 2 \times \mathrm{H}-6)$ and 9.89 and $9.93(2 \mathrm{~s}$, $2 \times \mathrm{NH}$); FAB-MS $m / z 367[\mathrm{M}+\mathrm{H}]^{+}$(Found: C, 54.99; H, 6.00; $\mathrm{N}, 7.53$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 55.06 ; \mathrm{H}, 6.12$; $\mathrm{N}, 7.55 \%$).

1-(3-C-Allyl-2-deoxy- α, β-d-erythro-pentofuranosyl)thymine 13
The anomeric mixture of nucleosides $11(894 \mathrm{mg}, 2.41 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{CH}_{3} \mathrm{OH}\left(25 \mathrm{~cm}^{3}\right)$ under argon and $\mathrm{CH}_{3} \mathrm{ONa}(660 \mathrm{mg}, 12.2 \mathrm{mmol})$ was added. After stirring of the mixture for 12 h at room temp., water ($25 \mathrm{~cm}^{3}$) was added and the mixture was neutralized with 4 m HCl . The aqueous phase was extracted with 3-methylbutan-1-ol $\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and the organic phase was concentrated under reduced pressure. Purification using silica gel column chromatography ($0-5 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded an anomeric mixture of β - and α nucleoside $13(\beta: \alpha ; 1.5: 1)(569 \mathrm{mg}, 81 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 12.50$ and $12.57\left(2 \times \mathrm{CH}_{3}\right), 40.94,41.13,44.32$ and $45.76\left(2 \times \mathrm{C}-2^{\prime}\right.$, $\left.2 \times \mathrm{CH}_{2}{ }^{\prime}\right), 62.20$ and $62.37\left(2 \times \mathrm{C}-5^{\prime}\right), 80.48,81.51,85.97$, $87.64,90.00$ and $91.87\left(2 \times \mathrm{C}-1^{\prime},-3^{\prime},-4^{\prime}\right), 110.02$ and 111.34 $(2 \times \mathrm{C}-5), 118.67$ and $118.85\left(2 \times=\mathrm{CH}_{2}{ }^{\prime}\right), 134.64$ and 134.72 $\left(2 \times=\mathrm{CH}^{\prime}\right), 138.61$ and $139.26(2 \times \mathrm{C}-6), 152.32$ and 152.44 $(2 \times \mathrm{C}-2)$ and 166.36 and $166.61(2 \times \mathrm{C}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.02$ and $2.08\left(2 \mathrm{~s}, 2 \times \mathrm{CH}_{3}\right), 2.14-2.38\left(\mathrm{~m}, 2 \times \mathrm{H}^{\mathrm{a}}-2^{\prime}\right.$ and $\left.\mathrm{H}^{\mathrm{b}}-2^{\prime}\right)$, 2.57-2.73 (m, $2 \times \mathrm{CH}_{2}{ }^{\prime}$ and $\left.\mathrm{H}^{\mathrm{b}}-2^{\prime}\right), 3.73-3.98\left(\mathrm{~m}, 2 \times \mathrm{H}-4^{\prime}\right.$ and $\left.-5{ }^{\prime}\right), 4.05(\mathrm{~m}, \mathrm{OH}), 4.34(\mathrm{~m}, \mathrm{OH}), 5.25-5.33\left(\mathrm{~m}, 2 \times=\mathrm{CH}_{2}{ }^{\prime}\right)$, $6.00-6.16\left(\mathrm{~m}, 2 \times=\mathrm{CH}^{\prime}\right), 6.33\left(\mathrm{dd}, J 2.1\right.$ and $\left.7.7, \mathrm{H}^{\prime} 1^{\prime}\right), 6.46$ (dd, $J 5.4$ and $\left.9.3, \mathrm{H}-1^{\prime}\right), 8.21$ and $8.22(2 \mathrm{~s}, 2 \times \mathrm{H}-6)$ and 9.97 and $10.03(2 \mathrm{~s}, 2 \times \mathrm{NH})$; EI-MS $m / z 282\left(\mathrm{M}^{+}, 9 \%\right)$; HR-MS (Found: M^{+}, 282.1210. Calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: M, 282.1216) (Found: C, 53.20; H, 6.31; N, 9.94. Calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$. $0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.60 ; \mathrm{H}, 6.57$; N, 9.62%).

1-(3-C-Allyl-2-deoxy- β-D-threo-pentofuranosyl)thymine 14 a and

 1-(3-C-allyl-2-deoxy- α-d-threo-pentofuranosyl)thymine 14bAn anomeric mixture of nucleosides $\mathbf{1 2}(79 \mathrm{mg}, 0.22 \mathrm{mmol})$ was dissolved in a saturated solution of NH_{3} in methanol $\left(10 \mathrm{~cm}^{3}\right)$. After stirring of the mixture for 15 h at room temp., the solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography ($3 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give anomers 14a ($23 \mathrm{mg}, 39 \%$) and $\mathbf{1 4 b}$ (26 mg , 44\%).
β-Isomer 14a: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.36\left(\mathrm{CH}_{3}\right), 42.56$ and $44.63\left(\mathrm{C}-2^{\prime}\right.$, $\left.\mathrm{CH}_{2}{ }^{\prime}\right), 60.87$ (C-5'), 79.61 (C-4'), 84.48, 85.11 ($\mathrm{C}-1^{\prime}$ and -3^{\prime}), $109.47(\mathrm{C}-5), 119.43\left(=\mathrm{CH}_{2}{ }^{\prime}\right), 132.57\left(=\mathrm{CH}^{\prime}\right), 138.08(\mathrm{C}-6)$, $150.83(\mathrm{C}-2)$ and $164.50(\mathrm{C}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.32-2.58 (m, 4 H, $\mathrm{H}_{2}-2^{\prime}, \mathrm{CH}_{2}$), $3.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.84$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 4.08-4.16 (m, $2 \mathrm{H}, \mathrm{H}_{2}-5^{\prime}$), $4.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.15-$ $5.22\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}{ }^{\prime}\right), 5.84-6.00\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}^{\prime}\right), 6.08(\mathrm{dd}, J 2.9$ and $\left.7.5,1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6)$ and $9.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
α-Isomer 14b: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.46\left(\mathrm{CH}_{3}\right), 42.05$ and $45.01\left(\mathrm{C}-2^{\prime}\right.$,
$\left.\mathrm{CH}_{2}{ }^{\prime}\right), 60.87\left(\mathrm{C}-5^{\prime}\right), 81.01\left(\mathrm{C}-4^{\prime}\right), 85.28$ and $86.09\left(\mathrm{C}-1^{\prime}\right.$ and $\left.-3^{\prime}\right), 111.14(\mathrm{C}-5), 119.28\left(=\mathrm{CH}_{2}{ }^{\prime}\right), 132.69\left(=\mathrm{CH}^{\prime}\right), 135.74(\mathrm{C}-6)$, $150.74(\mathrm{C}-2)$ and $164.39(\mathrm{C}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.36-2.45 (m, 4 H, H-2', CH ${ }^{2}$), $3.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.96-4.02(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}_{2}-5^{\prime}$), 4.10 (m, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.60 (br s, $1 \mathrm{H}, \mathrm{OH}$), 5.13-5.18 $\left(\mathrm{m}, 2 \mathrm{H},=\mathrm{CH}_{2}{ }^{\prime}\right), 5.82-5.98\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}^{\prime}\right), 6.28(\mathrm{dd}, J 6.1$ and 8.1, $1 \mathrm{H}, \mathrm{H}-1$ '), 7.19 (s, $1 \mathrm{H}, \mathrm{H}-6$) and 10.05 (br s, $1 \mathrm{H}, \mathrm{NH}$).

1-[3-C-Allyl-2-deoxy-5-O-(4,4'-dimethoxytrityl)- β-d-erythropentofuranosyl]thymine 15a and 1-[3-C-allyl-2-deoxy-5-O-(4,4'-dimethoxytrityl)- α-D-erythro-pentofuranosyl]thymine 15b
An anomeric mixture of nucleoside 13 ($569 \mathrm{mg}, 2.11 \mathrm{mmol}$), $\mathrm{AgNO}_{3}(358 \mathrm{mg}, 2.11 \mathrm{mmol})$ and $\mathrm{DMTCl}(1.785 \mathrm{~g}, 5.27 \mathrm{mmol})$ were dissolved in anhydrous THF ($50 \mathrm{~cm}^{3}$), and anhydrous pyridine $\left(0.85 \mathrm{~cm}^{3}, 10.5 \mathrm{mmol}\right)$ was added. The mixture was stirred at room temp. for 72 h . The mixture was filtered into 5% aq. sodium hydrogen carbonate $\left(100 \mathrm{~cm}^{3}\right)$. The product was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 100 \mathrm{~cm}^{3}\right)$, and the combined extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification by PLC (1% pyridine, $3 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, v/v/v, 3 runs) gave the α-anomer $\mathbf{1 5 b}$ ($304 \mathrm{mg}, 26 \%$) as the less polar isomer and the β-anomer $\mathbf{1 5 a}$ ($545 \mathrm{mg}, 47 \%$).
β-Isomer 15a. $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 11.22\left(\mathrm{CH}_{3}\right), 39.89\left(\mathrm{C}-2^{\prime}\right), 44.16$ $\left(\mathrm{CH}_{2}{ }^{\prime}\right), 55.22\left(\mathrm{OCH}_{3}\right), 62.46\left(\mathrm{C}-5^{\prime}\right), 80.13\left(\mathrm{C}-3^{\prime}\right), 83.97\left(\mathrm{C}-1^{\prime}\right)$, $87.34\left(\mathrm{CPh}_{3}, \mathrm{C}-4^{\prime}\right), 111.21$ (C-5), 113.18, 127.92, 128.01, 128.44, $129.92,130.25,130.28,134.71,134.91,143.64$ and 158.82 $\left(\mathrm{C}_{\text {arom }}\right), 119.84\left(=\mathrm{CH}_{2}{ }^{\prime}\right), 132.50\left(=\mathrm{CH}^{\prime}\right), 136.12(\mathrm{C}-6), 150.59$ (C-2) and $163.87(\mathrm{C}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12-2.41$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}{ }^{\prime}, \mathrm{H}_{2}-2^{\prime}$), 3.02 (dd, $J 2.4$ and $10.8,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5^{\prime}$), 3.67 (dd, $J 3.5$ and $10.8,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-5^{\prime}$), 3.79 (s, $6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}$), 4.06 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $4.90\left(\mathrm{dd}, J 1.4\right.$ and $17.1,1 \mathrm{H},=\mathrm{CH}_{2}{ }^{\text {a }}$), 5.09 (dd, $J 1.4$ and $\left.10.2,1 \mathrm{H},=\mathrm{CH}_{2}{ }^{\prime}{ }^{\mathrm{b}}\right), 5.68-5.82\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}^{\prime}\right), 6.51$ (dd, $J 5.1$ and $\left.9.4,1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}$), 7.21-7.45 (m, $9 \mathrm{H}, \mathrm{ArH}$), 7.86 (s, $1 \mathrm{H}, \mathrm{H}-6$) and $9.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
α-Isomer 15b: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.50\left(\mathrm{CH}_{3}\right), 39.93\left(\mathrm{C}-2^{\prime}\right), 45.43$ $\left(\mathrm{CH}_{2}{ }^{\prime}\right), 55.19\left(\mathrm{OCH}_{3}\right), 63.17\left(\mathrm{C}-5^{\prime}\right), 79.57\left(\mathrm{C}-3^{\prime}\right), 86.96\left(\mathrm{C}-4^{\prime}\right)$, $87.20\left(\mathrm{CPh}_{3}\right), 89.32(\mathrm{C}-1$ '), 109.15 (C-5), 113.27, 126.91, 127.96, $128.04,129.91,129.93,135.43,135.72,144.37$ and 158.57 $\left(\mathrm{C}_{\text {arom }}\right), 120.02\left(=\mathrm{CH}_{2}{ }^{\prime}\right), 132.63\left(=\mathrm{CH}^{\prime}\right), 137.58(\mathrm{C}-6), 150.52$ (C-2) and $164.21(\mathrm{C}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17-2.34$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}{ }^{\prime}, \mathrm{H}^{\alpha}-2^{\prime}$), $2.79\left(\mathrm{dd}, J 7.7\right.$ and $\left.14.3,1 \mathrm{H}, \mathrm{H}^{\mathrm{\beta}}-2^{\prime}\right), 3.02$ (dd, $J 2.6$ and $10.8,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5^{\prime}$), 3.44 (dd, $J 3.7$ and $10.8,1 \mathrm{H}$, $\mathrm{H}^{\mathrm{b}}-5^{\prime}$), $3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right.$), $4.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.98(\mathrm{dd}$, $J 1.3$ and $\left.17.0,1 \mathrm{H},=\mathrm{CH}_{2}{ }^{\text {a }}\right), 5.10(\mathrm{dd}, J 1.3$ and $10.1,1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}{ }^{\prime \mathrm{b}}\right)$, $5.69-5.80\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}^{\prime}\right), 6.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.85$ $(\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}), 7.16-7.45(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 7.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6)$ and 9.13 (s, $1 \mathrm{H}, \mathrm{NH}$); FAB-MS m/z 584 [M] ${ }^{+}$(Found: C, 69.28; H, 6.20; $\mathrm{N}, 5.19$. Calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.63 ; \mathrm{H}, 6.22$; N, 4.78\%).

1-\{3-C-Allyl-3-O-[cyanoethoxy(diisopropylamino)phosphino]-2-deoxy-5-O-(4,4'-dimethoxytrityl)- β-d-erythro-pentofuranosyl\}thymine 16a

Method C. General method for phosphitylation. Nucleoside 15a ($545 \mathrm{mg}, 0.93 \mathrm{mmol}$) was coevaporated with anhydrous $\mathrm{CH}_{3} \mathrm{CN}\left(3 \times 2 \mathrm{~cm}^{3}\right)$ and was then dissolved under argon in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3.7 \mathrm{~cm}^{3}\right)$. DIPEA ($1.02 \mathrm{~cm}^{3}, 5.97 \mathrm{mmol}$) was added followed by dropwise addition of 2-cyanoethyl N, N diisopropylphosphoramidochloridite ($0.44 \mathrm{~cm}^{3}, 1.86 \mathrm{mmol}$). After $5 \mathrm{~h}, \mathrm{CH}_{3} \mathrm{OH}\left(1 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was diluted with EtOAc $\left(20 \mathrm{~cm}^{3}\right)$ containing triethylamine (0.2 cm^{3}), washed successively with saturated aq. $\mathrm{NaHCO}_{3}(3 \times 30$ $\left.\mathrm{cm}^{3}\right)$ and saturated aq. $\mathrm{NaCl}\left(2 \times 30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Purification using silica gel column chromatography ($\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{3} \mathrm{~N}$-light petroleum, 15:30:5:50, $\mathrm{v} / \mathrm{v} / \mathrm{v} / \mathrm{v}$) followed by precipitation in light petroleum (200 cm^{3}) at $-20^{\circ} \mathrm{C}$ [after re-dissolution in anhydrous toluene $\left(2 \mathrm{~cm}^{3}\right)$] afforded compound 16a as a solid $(534 \mathrm{mg}, 75 \%) ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 138.88$ and 138.28.

1-\{3-C-Allyl-3-O-[cyanoethoxy(diisopropylamino)phosphino]-2-deoxy-5-O-(4,4'-dimethoxytrityl)- α-D-erythro-pentofuranosyl\}thymine 16b

Method C. Used amounts. Nucleoside 15b ($304 \mathrm{mg}, 0.52$ mmol), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.1 \mathrm{~cm}^{3}\right)$, DIPEA ($0.57 \mathrm{~cm}^{3}, 3.33$ mmol) and 2-cyanoethyl N, N-diisopropylphosphoramidochloridite ($0.25 \mathrm{~cm}^{3}, 1.06 \mathrm{mmol}$) as above. Purification using silica gel column chromatography ($\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{3} \mathrm{~N}$-light petroleum, 15:30:5:50, $\mathrm{v} / \mathrm{v} / \mathrm{v} / \mathrm{v}$) followed by precipitation in light petroleum $\left(150 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ [after re-dissolution in anhydrous toluene $\left(1.5 \mathrm{~cm}^{3}\right)$] afforded compound $\mathbf{1 6 b}$ as a solid ($306 \mathrm{mg}, 77 \%$); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 143.94$.

1-(3-C-Allyl- β-d-ribofuranosyl)thymine 17

To a solution of compound $\mathbf{1}^{8}(2.16 \mathrm{~g}, 4.51 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right)$ under argon at $-78^{\circ} \mathrm{C}$ was added dropwise BCl_{3} (1 m solution in hexane; $18.1 \mathrm{~cm}^{3}, 18.1 \mathrm{mmol}$). The mixture was stirred for 3.5 h at $-78^{\circ} \mathrm{C}$, additional BCl_{3} was added (1 m hexane solution; $4.0 \mathrm{~cm}^{3}, 4.0 \mathrm{mmol}$), and the mixture was stirred for a further $2 \mathrm{~h} . \mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$ was added to the mixture, which was then stirred overnight at room temp. After concentration under reduced pressure and coevaporation with $\mathrm{MeOH}\left(3 \times 5 \mathrm{~cm}^{3}\right)$, the residue was purified using silica gel column chromatography ($3-6 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give title compound $\mathbf{1 7}(977 \mathrm{mg}, 73 \%)$, which was used in the next step without further purification. An analytical sample was obtained by recrystallization from $\mathrm{MeOH} ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 12.68$ $\left(\mathrm{CH}_{3}\right), 39.65\left(\mathrm{CH}_{2}{ }^{\prime}\right), 62.22\left(\mathrm{C}-5^{\prime}\right), 78.62\left(\mathrm{C}-2^{\prime}\right), 79.91\left(\mathrm{C}-3^{\prime}\right)$, 88.78 (C-4'), 89.05 (C-1'), 112.14 (C-5), 118.91 ($=\mathrm{CH}_{2}$ '), 135.11 $\left(=\mathrm{CH}^{\prime}\right), 139.63(\mathrm{C}-6), 153.68(\mathrm{C}-2)$ and $166.90(\mathrm{C}-4)$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49-2.56(\mathrm{dd}, J 8.3$ and $14.8,1$ $\mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{a}}$), 2.56-2.63 (dd, $J 6.2$ and $\left.14.8,1 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{b}}\right), 3.72-3.77$ (dd, $J 2.6$ and $12.1,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5^{\prime}$), 3.80-3.84 (dd, $J 2.3$ and $12.2,1$ H, H${ }^{\mathrm{a}-5}$ '), 3.94-3.96 (t, J 2.6, $1 \mathrm{H}, \mathrm{H}^{\prime} 4^{\prime}$), 4.16 (d, J 7.9, $1 \mathrm{H}, \mathrm{H}^{-}$ $\left.2^{\prime}\right), 5.12-5.21\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}{ }^{\prime}\right), 5.99-6.05\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}^{\prime}\right), 6.00$ (d, J 7.9, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$) and 8.05 (s, 1 H, H-6); FAB-MS m/z 299 $[\mathrm{M}+\mathrm{H}]^{+}$(Found: C, $52.39 ; \mathrm{H}, 5.84 ; \mathrm{N}, 9.26$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, $52.34 ; \mathrm{H}, 6.08 ; \mathrm{N}, 9.39 \%$).

1-[3-C-Allyl-5-O-(4,4' -dimethoxytrityl)- β-D-ribofuranosyl]thymine 18

Nucleoside 17 ($977 \mathrm{mg}, 3.28 \mathrm{mmol}$) was coevaporated with anhydrous pyridine $\left(3 \times 10 \mathrm{~cm}^{3}\right)$ and re-dissolved in anhydrous pyridine $\left(8 \mathrm{~cm}^{3}\right)$. DMTCl $(1.33 \mathrm{~g}, 3.93 \mathrm{mmol})$ was added and the mixture was stirred for 16 h under argon at room temp. The solution was evaporated under reduced pressure, the residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$, and the solution was washed with saturated aq. $\mathrm{NaCl}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification using silica gel column chromatography ($20-60 \% \mathrm{EtOAc}$ in light petroleum, 0.5% pyridine, $\mathrm{v} / \mathrm{v} / \mathrm{v}$) gave title compound $18(1.66 \mathrm{~g}, 82 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right), 11.19\left(\mathrm{CH}_{3}\right), 38.25$ $\left(\mathrm{CH}_{2}{ }^{\prime}\right), 55.18\left(\mathrm{OCH}_{3}\right), 62.04\left(\mathrm{C}-5^{\prime}\right), 77.83$ and $78.31\left(\mathrm{C}-2^{\prime}\right.$ and $\left.-3^{\prime}\right), 86.00,87.39$ and $87.58\left(\mathrm{C}-1^{\prime},-4^{\prime}\right.$ and $\left.C \mathrm{Ph}_{3}\right), 111.28(\mathrm{C}-5)$, 113.26, 113.30, 127.38, 128.07, 128.61, 132.50, 134.80, 134.90, $136.70,143.80$ and $158.96\left(=\mathrm{CH}^{\prime}, \mathrm{C}-6\right.$ and $\left.\mathrm{C}_{\text {arom }}\right), 118.75$ $\left(=\mathrm{CH}_{2}{ }^{\prime}\right), 152.01(\mathrm{C}-2)$ and $164.37(\mathrm{C}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.21-2.29\left(\mathrm{dd}, J 8.3\right.$ and $14.5,1 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{a}}$), $2.46-2.53(\mathrm{dd}$, $J 5.6$ and $14.5,1 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{b}}$), 3.24-3.29 (dd, $J 2.2$ and $10.7,1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{a}}-5^{\prime}\right), 3.64-3.68\left(\mathrm{dd}, J 2.9\right.$ and $\left.10.9,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-5^{\prime}\right), 3.76(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{OCH}_{3}\right), 4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.28\left(\mathrm{~d}, 1 \mathrm{H}, J 7.2, \mathrm{H}-2^{\prime}\right), 4.49$ $\left(\mathrm{d}, 1 \mathrm{H}, J 17.1,=\mathrm{CH}_{2}{ }^{\prime \mathrm{a}}\right), 4.90\left(\mathrm{~d}, 1 \mathrm{H}, J 10.3,=\mathrm{CH}_{2}{ }^{\mathrm{b}}\right), 5.75-5.83$ $\left(\mathrm{m}, 1 \mathrm{H},=\mathrm{CH}^{\prime}\right), 6.15\left(\mathrm{~d}, 1 \mathrm{H}, J 7.2, \mathrm{H}-1^{\prime}\right), 6.82-6.86(\mathrm{~m}, 4 \mathrm{H}$, ArH), 7.23-7.38 (m, 9 H, ArH) and 7.79 (s, 1 H, H-6); FAB-MS $m / z 600[\mathrm{M}]^{+}$(Found: C, 67.88; H, 5.86; N, 5.13. Calc. for $\left.\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot 0.2 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}: \mathrm{C}, 68.19 ; \mathrm{H}, 6.05 ; \mathrm{N}, 5.00 \%\right)$.
1-[3-C-Allyl-2-O-(tert-butyldimethylsily)-5- O-(4,4'-dimethoxy-
trityl)- $\boldsymbol{\beta}$-D-ribofuranosyl]thymine $\mathbf{1 9}$
Nucleoside $\mathbf{1 8}(1.61 \mathrm{~g}, 2.68 \mathrm{mmol})$ was coevaporated with
anhydrous $\mathrm{CH}_{3} \mathrm{CN}\left(3 \times 10 \mathrm{~cm}^{3}\right)$ and re-dissolved in anhydrous DMF ($10 \mathrm{~cm}^{3}$). Imidazole ($1.46 \mathrm{~g}, 21.4 \mathrm{mmol}$) was added followed by the addition of TBDMSCl $(1.61 \mathrm{~g}, 10.7 \mathrm{mmol})$. The mixture was stirred at room temp. under argon for $72 \mathrm{~h} . \mathrm{MeOH}$ $\left(3 \mathrm{~cm}^{3}\right)$ was added and the solution was concentrated under reduced pressure. The residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ $\left.\mathrm{cm}^{3}\right)$ and this solution was washed with water $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification using silica gel column chromatography ($20-30 \%$ EtOAc in light petroleum, 0.5% pyridine, $\mathrm{v} / \mathrm{v} / \mathrm{v}$) gave title compound 19 ($1.54 \mathrm{~g}, 82 \%$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-4.62$ and $-4.56\left(2 \times \mathrm{SiCH}_{3}\right), 10.43\left(\mathrm{CH}_{3}\right), 17.70$ $\left[C_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right],} 25.52\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 38.40\left(\mathrm{CH}_{2}{ }^{\prime}\right), 55.19\right.$ and 55.28 $\left(2 \times \mathrm{OCH}_{3}\right), 61.68\left(\mathrm{C}-5^{\prime}\right), 78.00$ and $78.46\left(\mathrm{C}-2^{\prime}\right.$ and $\left.-3^{\prime}\right), 84.57$, 85.93 and 87.66 ($\mathrm{C}-1^{\prime},-4^{\prime}$ and CPh_{3}), 111.83 (C-5), 113.26, $113.30,127.68,128.04,128.93,130.66,132.34,134.41,134.44$, 136.44, 143.29 and $159.15\left(=\mathrm{CH}^{\prime}, \mathrm{C}-6\right.$ and $\left.\mathrm{C}_{\text {arom }}\right), 118.37$ $\left(=\mathrm{CH}_{2}\right), 150.94(\mathrm{C}-2)$ and $163.77(\mathrm{C}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.00$ and 0.19 $\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{SiCH}_{3}\right), 0.92\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.32 (d, J6.8, $2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\prime}$), 3.42 (d, J $\left.10.6,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5^{\prime}\right), 3.72-3.76$ (dd, J 3.1 and $10.1,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-5^{\prime}$), $3.79\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right.$), $4.03-$ $4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}^{\prime}{ }^{\text {a }}\right.$, $\left.\mathrm{H}-4^{\prime}\right), 4.38\left(\mathrm{~d}, J 7.5,1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.78(\mathrm{~d}$, $\left.J 10.7,1 \mathrm{H},=\mathrm{CH}_{2}{ }^{{ }^{\mathrm{b}} \mathrm{b}}\right), 5.71-5.77\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}^{\prime}\right), 6.22(\mathrm{~d}, J 7.4$, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.20-7.34(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 7.83$ (s, $1 \mathrm{H}, \mathrm{H}-6$) and 8.76 (s, $1 \mathrm{H}, \mathrm{NH}$); FAB-MS m/z 714 $[\mathrm{M}]^{+}$(Found: C, 66.78; H, 6.90; N, 3.99. Calc. for $\mathrm{C}_{40} \mathrm{H}_{50}{ }^{-}$ $\left.\mathrm{N}_{2} \mathrm{O}_{8} \mathrm{Si} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.78 ; \mathrm{H}, 7.08 ; \mathrm{N}, 3.89 \%\right)$.

1-\{3-C-Allyl-2-O-(tert-butyldimethylsilyl)-3-O-[2-cyanoethoxy-(diisopropylamino)phosphino]-5-O-(4,4'-dimethoxytrityl)-β-D-ribofuranosyl]thymine 20

Method C. Used amounts. Nucleoside 19 ($252 \mathrm{mg}, 0.35$ mmol), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$, DIPEA ($2.63 \mathrm{mmol}, 0.45$ cm^{3}), 2-cyanoethyl N, N-diisopropylphosphoramidochloridite ($1.4 \mathrm{mmol}, 0.33 \mathrm{~cm}^{3}$) as above. After 24 h , the reaction was quenched by addition of $\mathrm{CH}_{3} \mathrm{OH}\left(1 \mathrm{~cm}^{3}\right)$. Purification using silica gel column chromatography ($0.5-1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, v/v) followed by precipitation in light petroleum $\left(250 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$ after re-dissolution in anhydrous toluene ($2 \mathrm{~cm}^{3}$) afforded title compound 20 ($249 \mathrm{mg}, 78 \%$); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 139.50$ and 140.75 .

1-[3-C-Allyl-5-O-(tert-butyldimethylsilyl)-2-deoxy-3-O-

 trimethylsilyl- α, β-D-erythro-pentofuranosyl]thymine 21To a stirred suspension of the methyl glycoside $\mathbf{5}(720 \mathrm{mg}, 2.38$ mmol) and thymine ($604 \mathrm{mg}, 4.79 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ ($25 \mathrm{~cm}^{3}$) under argon at room temp. was added dropwise BSA ($4.7 \mathrm{~cm}^{3}, 19.01 \mathrm{mmol}$). The mixture was stirred for 1 h until clearness. The reaction mixture was then cooled to $-30^{\circ} \mathrm{C}$, and TMS triflate $\left(0.86 \mathrm{~cm}^{3}, 4.75 \mathrm{mmol}\right)$ was dropwise added. The reaction mixture was stirred for 7 days at room temp. before being diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ and the reaction quenched with saturated aq. $\mathrm{NaHCO}_{3}\left(2 \times 50 \mathrm{~cm}^{3}\right)$. After being washed with water $\left(2 \times 50 \mathrm{~cm}^{3}\right)$ the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification using silica gel column chromatography ($0-1 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, v / v) afforded a ($1: 2$) anomeric mixture of nucleosides 21 $(926 \mathrm{mg}, 83 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.92,-5.81,-5.76$ and -5.61 $\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.92,2.03$ and $2.17\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 12.39$ and $12.45 \ddagger\left(2 \times \mathrm{CH}_{3}\right), 17.92$ and $18.01 \ddagger\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.65$ and $25.78\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.41 \ddagger$ and $39.84\left(2 \times \mathrm{C}-2^{\prime}\right), 44.74 \ddagger$ and $46.16\left(2 \times 62.56 \ddagger\right.$ and $62.93\left(2 \times \mathrm{C}-5^{\prime}\right) 83.85$ and $83.92 \ddagger$ $\left(2 \times \mathrm{C}-3^{\prime}\right), 85.44 \ddagger$ and $85.92\left(2 \times \mathrm{C}-1^{\prime}\right), 88.62 \ddagger$ and 89.99 $(2 \times \mathrm{C}-4), 109.66$ and $109.99 \$(2 \times \mathrm{C}-5), 117.83 \ddagger$ and 118.18 $\left(2 \times=\mathrm{CH}_{2}{ }^{\prime \prime}\right), 133.63\left(2 \times=\mathrm{CH}^{\prime \prime}\right), 135.76 \ddagger$ and $137.12(2 \times \mathrm{C}-6)$, $150.47 \pm$ and $150.65(2 \times \mathrm{C}-2)$ and $164.28 \ddagger$ and $164.38(2 \times \mathrm{C}-$ 4); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.01-0.20\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.92$

[^1][s, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.93\left(\mathrm{~s}, 2 \times \mathrm{CH}_{3}\right), 1.98-2.11\left(\mathrm{~m}, 2 \times \mathrm{H}^{\mathrm{a}} \mathrm{-}^{\prime}\right)$, $2.40-2.65\left(\mathrm{~m}, 2 \times \mathrm{H}^{\mathrm{b}}-2^{\prime}, 2 \times \mathrm{CH}_{2}{ }^{\prime}\right), 3.73-3.98\left(\mathrm{~m}, 2 \times \mathrm{H}_{2}-5^{\prime}\right)$, $4.04 \ddagger\left(\mathrm{~m}, \mathrm{H}-4^{\prime}\right), 4.22\left(\mathrm{~m}, \mathrm{H}-4^{\prime}\right), 4.94-5.17$ (m, $2 \times=\mathrm{CH}_{2}{ }^{\prime}$), $5.74-5.99\left(\mathrm{~m}, 2 \times=\mathrm{CH}^{\prime}\right), 6.15 \ddagger\left(\mathrm{dd}, J 4.9\right.$ and $\left.9.2, \mathrm{H}-1^{\prime}\right), 6.27$ (dd, $J 2.5$ and $\left.8.1 \mathrm{H}-1^{\prime}\right), 7.61 \ddagger$ and $7.64(2 \mathrm{~s}, 2 \times \mathrm{H}-6)$ and 9.22 and $9.34 \ddagger(2 \mathrm{~s}, 2 \times \mathrm{NH})$; FAB-MS $m / z 469[\mathrm{M}+\mathrm{H}]^{+}$(Found: C, $56.47 ; \mathrm{H}, 8.20 ; \mathrm{N}, 5.78$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2}: \mathrm{C}, 56.37 ; \mathrm{H}$, 8.60; N, 5.98\%).

1-[5-O-(tert-Butyldimethylsilyl)-2-deoxy-3-C-(3-hydroxy-propyl)-3-O-trimethylsilyl- α, β-D-erythro-pentofuranosyl]-

 thymine 22To a stirred solution of allyl compound $21(918 \mathrm{mg}, 1.96 \mathrm{mmol})$ in anhydrous THF ($4 \mathrm{~cm}^{3}$) under argon at room temp. was added $\mathrm{BH}_{3} \cdot 1,4$-oxathiane ($0.27 \mathrm{~cm}^{3}$ of a 7.8 m solution in 1,4 oxathiane, 2.11 mmol). The mixture was cooled to $0^{\circ} \mathrm{C}$ and 2 m aq. $\mathrm{NaOH}\left(1.1 \mathrm{~cm}^{3}\right)$ was slowly added followed by the dropwise addition of 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.28 \mathrm{~cm}^{3}\right)$; stirring was continued for 60 min at room temp. The reaction mixture was poured into ice-water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed successively with saturated aq. $\mathrm{NaHCO}_{3}(2 \times 50$ cm^{3}) and water ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography ($0-40 \%$ EtOAc in light petroleum, v/v) to give title compound 22 as a solid ($602 \mathrm{mg}, 63 \%$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $-5.75,-5.61$ and $-5.44\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.00$ and 2.27 $\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 12.50$ and $12.56 \ddagger\left(2 \times \mathrm{CH}_{3}\right), 18.07$ and $18.17 \ddagger$ $\left[2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right], 25.78$ and $25.90 \ddagger\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.71 \pm$ and $27.82\left(2 \times \mathrm{C}-2^{\prime \prime}\right), 31.49 \ddagger$ and $31.81\left(2 \times \mathrm{C}-1^{\prime \prime}\right), 44.67 \ddagger$ and $46.01\left(2 \times \mathrm{C}-2^{\prime}\right), 62.79,62.94$ and $63.19\left(2 \times \mathrm{C}-5^{\prime}\right.$ and $2 \times \mathrm{C}$ $\left.3^{\prime \prime}\right), 84.38$ and $84.48 \ddagger\left(2 \times \mathrm{C}-3^{\prime}\right), 85.79\left(2 \times \mathrm{C}-1^{\prime}\right), 88.61 \ddagger$ and $89.93\left(2 \times \mathrm{C}-4^{\prime}\right)$) 109.69 and $109.97 \ddagger(2 \times \mathrm{C}-5), 135.88 \ddagger$ and $137.30(2 \times \mathrm{C}-6), 150.44 \ddagger$ and $150.65(2 \times \mathrm{C}-2)$ and $164.15 \ddagger$ and $164.26(2 \times \mathrm{C}-4) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.01-0.24\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.91\left[\mathrm{~s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.59-2.04\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}, \mathrm{H}^{\mathrm{a}}-\right.$ $\left.2^{\prime} \ddagger, \mathrm{H}_{2}-1^{\prime \prime}\right), 2.10\left(\mathrm{dd}, J 1.7\right.$ and $\left.14.1, \mathrm{H}^{\mathrm{a}}-2^{\prime}\right), 2.48 \ddagger\left(\mathrm{~m}, \mathrm{H}^{\mathrm{b}}-2^{\prime}\right)$, 2.53 (dd, $J 8.3$ and 14.1, $\mathrm{H}^{\mathrm{b}}-2^{\prime}$), 3.67-3.90 (m, $2 \times \mathrm{H}_{2}-5^{\prime}$ and $\mathrm{H}_{2}{ }^{-}$ $\left.3^{\prime \prime}\right), 4.07 \ddagger\left(\mathrm{~m}, \mathrm{H}-4^{\prime}\right), 4.23$ (m, H-4'), $6.18 \ddagger$ (dd, $J 4.9$ and 9.2 , H1^{\prime}), 6.27 (dd, $J 2.5$ and $8.2, \mathrm{H}^{\prime} 1^{\prime}$), $7.63 \ddagger$ and 7.69 ($2 \mathrm{~s}, 2 \times \mathrm{H}-6$) and 9.00 (br s, $2 \times \mathrm{NH}$); FAB-MS $m / z 487$ [M + H] ${ }^{+}$(Found: C, $54.34 ; \mathrm{H}, 8.44 ; \mathrm{N}, 5.59$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}$: C, $54.29 ; \mathrm{H}$, 8.70; N, 5.76\%).

1-[5-O-(tert-Butyldimethylsilyl)-2-deoxy-3-C-(3-phthalimido-

 propyl)-3-O-trimethylsilyl-a, β-D-erythro-pentofuranosyl]thymine 23Compound 22 ($602 \mathrm{mg}, 1.24 \mathrm{mmol}$), phthalimide ($237 \mathrm{mg}, 1.61$ mmol) and triphenylphosphine ($444 \mathrm{mg}, 1.69 \mathrm{mmol}$) were dissolved in anhydrous THF ($1.3 \mathrm{~cm}^{3}$) under argon. The mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of diethyl azodicarboxylate (DEAD) in anhydrous THF ($0.62 \mathrm{~cm}^{3}$ THF; 1.59 mmol) was added dropwise. After 24 h at room temperature, the solvent was evaporated off under reduced pressure. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ and washed successively with saturated aq. $\mathrm{NaHCO}_{3}\left(2 \times 40 \mathrm{~cm}^{3}\right)$ and water $\left(2 \times 40 \mathrm{~cm}^{3}\right)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded title compound 23 as a solid ($656 \mathrm{mg}, 86 \%$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-6.07$ and $-5.86\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.81$ and 2.05 $\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 12.42$ and $14.28 \ddagger\left(2 \times \mathrm{CH}_{3}\right), 17.83$ and $17.95 \pm$ $\left[2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right], 25.57$ and $25.72 \ddagger\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 23.63 \ddagger$ and $23.90\left(2 \times \mathrm{C}-2^{\prime \prime}\right), 32.40 \ddagger$ and $32.81\left(2 \times \mathrm{C}-1^{\prime \prime}\right), 37.88$ and $37.97 \pm$ $\left(2 \times \mathrm{C}-3^{\prime \prime}\right), 45.94\left(2 \times \mathrm{C}-2^{\prime}\right), 61.98$ and $63.05 \ddagger\left(2 \times \mathrm{C}-5^{\prime}\right)$, $84.18 \ddagger$ and $84.20\left(2 \times \mathrm{C}-3^{\prime}\right), 85.61 \ddagger$ and $85.77\left(2 \times \mathrm{C}-1^{\prime}\right)$, $88.45 \ddagger$ and $89.76(2 \times \mathrm{C}-4), 109.71$ and $110.00 \ddagger(2 \times \mathrm{C}-5)$, $123.30 \ddagger, 123.33,132.10,132.15 \ddagger, 134.06 \ddagger$ and 134.09 $\left(2 \times \mathrm{C}_{\text {arom }}\right), 135.82 \ddagger$ and $137.30(2 \times \mathrm{C}-6), 150.28 \ddagger$ and 150.50 $(2 \times \mathrm{C}-2), 164.05(2 \times \mathrm{C}-4)$ and $168.40 \ddagger$ and $168.43(2 \times \mathrm{CON})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) \quad 0.01-0.18\left[2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.2 \times \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.81$
[s, $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.71-1.96\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}, \mathrm{H}^{\mathrm{a}}-2^{\prime} \ddagger, \mathrm{H}_{2}-1^{\prime \prime}\right.$ and $\left.\mathrm{H}-2^{\prime \prime}\right), 2.05\left(\mathrm{dd}, J 14.3, \mathrm{H}^{\mathrm{a}}-2^{\prime}\right), 2.40 \ddagger\left(\mathrm{dd}, J 4.8\right.$ and $\left.12.5, \mathrm{H}^{\mathrm{b}}-2^{\prime}\right)$, 2.45 (dd, $J 8.2$ and 14.2, $\mathrm{H}^{\mathrm{b}}-2^{\prime}$), $3.60-3.71\left(\mathrm{~m}, \mathrm{H}^{\mathrm{a}} 5^{\prime} \ddagger, \mathrm{H}-5^{\prime} \mathrm{a}\right.$ and $\left.\mathrm{H}_{2}-3^{\prime \prime}\right), 3.81 \ddagger\left(\mathrm{~m}, \mathrm{H}^{\mathrm{b}}-5^{\prime}\right), 4.01 \ddagger\left(\mathrm{~m}, \mathrm{H}-4^{\prime}\right), 4.16-4.23(\mathrm{~m}$, $\mathrm{H}-4^{\prime}$ and $\left.\mathrm{H}^{\mathrm{b}}-5^{\prime}\right), 6.15 \ddagger\left(\mathrm{dd}, J 4.8\right.$ and $\left.9.2, \mathrm{H}-1^{\prime}\right), 6.24$ (dd, $J 2.0$ and $\left.8.2, \mathrm{H}-1^{\prime}\right), 7.58 \ddagger$ and $7.65\left(2 \mathrm{~s}, \mathrm{H}_{2}-6\right), 7.66-7.81(2 \times \mathrm{ArH})$ and 8.58 and $8.69 \ddagger(2 \mathrm{~s}, 2 \times \mathrm{NH})$; FAB-MS $m / z 616[\mathrm{M}+\mathrm{H}]^{+}$.

1-[2-Deoxy-3-C-(3-phthalimidopropyl)- α, β-d-erythro-pentofuranosyl]thymine 24

To a solution of nucleoside $23(668 \mathrm{mg}, 1.09 \mathrm{mmol})$ in anhydrous THF ($27 \mathrm{~cm}^{3}$) was added 1.1 m TBAF in THF (2.2 $\mathrm{cm}^{3}, 2.42 \mathrm{mmol}$). The reaction mixture was stirred under argon for 20 min and then was concentrated to dryness. Purification using silica gel column chromatography (20% EtOAc in light petroleum, v / v) afforded title compound $\mathbf{2 4}$ as solid (154 mg , $33 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.12$ and $12.22 \ddagger\left(2 \times \mathrm{CH}_{3}\right), 23.37 \ddagger$ and 23.57 $\left(2 \times \mathrm{C}-2^{\prime \prime}\right), 32.21 \ddagger$ and $32.80\left(2 \times \mathrm{C}-1^{\prime \prime}\right) .38 .09 \ddagger$ and 38.24 $\left(2 \times \mathrm{C}-3^{\prime \prime}\right), 42.60 \ddagger$ and $44.56\left(2 \times \mathrm{C}-2^{\prime}\right), 58.17$ and $62.02 \ddagger$ ($2 \times$ C-5'), $79.60,80.78 \ddagger, 85.78 \ddagger, 87.32,88.93 \ddagger$ and 91.51 (C-$1^{\prime},-3^{\prime}$ and $\left.-4^{\prime}\right), 108.43$ and $110.74 \ddagger(2 \times \mathrm{C}-5), 123.29,131.96$ and $134.06\left(2 \times \mathrm{C}_{\text {arom }}\right), 137.29 \ddagger$ and $137.93(2 \times \mathrm{C}-6), 151.06 \ddagger$ and $151.32(2 \times \mathrm{C}-2), 164.34 \$$ and $164.72(2 \times \mathrm{C}-4)$ and $168.72 \ddagger$ and $168.83(\mathrm{CON}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.75-2.62\left(\mathrm{~m}, 2 \times \mathrm{CH}_{3}\right.$, $\mathrm{H}_{2}-2^{\prime}, \mathrm{H}_{2}-1^{\prime \prime}$ and $\left.\mathrm{H}_{2}-2^{\prime \prime}\right)$, $3.67-4.55\left(\mathrm{~m}, 2 \times \mathrm{H}-4^{\prime}, \mathrm{H}_{2}-5^{\prime}\right.$ and $\mathrm{H}_{2}{ }^{-}$ $\left.3^{\prime \prime}\right), 6.17\left(\mathrm{~d}, J 5.0, \mathrm{H}-1^{\prime}\right), 6.27 \ddagger\left(\mathrm{dd}, J 5.2\right.$ and $\left.9.2, \mathrm{H}-1^{\prime}\right), 7.66-$ $7.81(\mathrm{~m}, 2 \times \mathrm{H}-6$ and ArH$)$ and $10.90(\mathrm{br} \mathrm{s}, 2 \times \mathrm{NH})$; FAB-MS $m / z 430[\mathrm{M}+\mathrm{H}]^{+}$.

1-[2-Deoxy-5-O-(4,4'-dimethoxytrityl)-3-C-(3-phthalimido-propyl)- α-D-erythro-pentofuranosyl]thymine 25

An anomeric mixture of nucleoside $24(368 \mathrm{mg}, 0.86 \mathrm{mmol})$, $\mathrm{AgNO}_{3}(174 \mathrm{mg}, 1.02 \mathrm{mmol})$ and $\mathrm{DMTCl}(1.45 \mathrm{~g}, 4.28 \mathrm{mmol})$ were dissolved in anhydrous THF ($35 \mathrm{~cm}^{3}$), and pyridine (0.35 $\mathrm{cm}^{3}, 4.33 \mathrm{mmol}$) was added. The mixture was stirred at room temp. for 72 h with exclusion of light. The mixture was filtered into 5% aq. $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$. The product was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 100 \mathrm{~cm}^{3}\right)$, and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification by PLC (2% pyridine, $5 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, v/v/v, two runs) gave the α-anomer 25 ($267 \mathrm{mg}, 43 \%$) as the less polar isomer and the corresponding β-anomer ($94 \mathrm{mg}, 15 \%$).
β-Anomer 25: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 11.18\left(\mathrm{CH}_{3}\right), 23.36\left(\mathrm{C}-2^{\prime \prime}\right), 31.81$ ($\mathrm{C}-1^{\prime \prime}$), 37.92 ($\left.\mathrm{C}-3^{\prime \prime}\right), 43.99\left(\mathrm{C}-2^{\prime}\right), 55.12\left(\mathrm{OCH}_{3}\right), 62.69\left(\mathrm{C}-5^{\prime}\right)$, 80.98 (C-3'), $84.15\left(\mathrm{C}-1^{\prime}\right), 87.32\left(\mathrm{C}-4^{\prime}\right), 87.84\left(\mathrm{CPh}_{3}\right), 111.33$ (C-5), 113.24, 127.35, 128.01, 130.28, 130.34, 134.78, 134.99 143.75 and 158.88 (DMT), 123.31, 131.99 and 134.06 (Phth), 136.58 (C-6), $150.76(\mathrm{C}-2), 163.96(\mathrm{C}-4)$ and $168.62(\mathrm{CON})$ $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45-1.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2}-1^{\prime \prime}\right.$ and $\left.-2^{\prime \prime}\right)$, $2.09\left(\mathrm{dd}, J 9.5\right.$ and 12.4, $\left.2 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-2^{\prime}\right), 2.40(\mathrm{dd}, J 4.8$ and $12.4,1$ $\left.\mathrm{H}, \mathrm{H}^{\mathrm{b}}-2^{\prime}\right), 3.15$ (dd, J 2.2 and $10.8,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5^{\prime}$), 3.53 (m, 2 H , $\left.\mathrm{H}_{2}-3^{\prime \prime}\right), 3.62\left(\mathrm{dd}, J 3.3,10.8,1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}-5^{\prime}\right), 3.79\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right)$, 4.06 (m, 1 H, H-4'), 6.49 (dd, J 4.8 and $9.5,1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}$), 6.84 (m, 4 H, DMT), 7.23-7.38 (m, 9 H, DMT), 7.65-7.85 (m, 5 H , Phth and H-6) and 9.18 (s, $1 \mathrm{H}, \mathrm{NH}$).
α-Anomer 25: $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.26\left(\mathrm{CH}_{3}\right), 23.56\left(\mathrm{C}-2^{\prime \prime}\right), 32.05$ $\left(\mathrm{C}-1^{\prime \prime}\right), 37.82\left(\mathrm{C}-3^{\prime \prime}\right), 44.94\left(\mathrm{C}-2^{\prime}\right), 54.88\left(\mathrm{OCH}_{3}\right), 63.28\left(\mathrm{C}-5^{\prime}\right)$, 80.08 (C-3'), $86.74\left(\mathrm{C}-4^{\prime}\right), 87.36\left(\mathrm{CPh}_{3}\right), 89.86\left(\mathrm{C}-1^{\prime}\right), 108.64$ (C-5), 113.19, 126.79, 127.91, 129.81, 129.88, 135.46, 135.79, 144.46 and 158.47 (DMT), 123.75, 131.85 and 133.87 (Phth), 137.92 (C-6), 150.66 (C-2), $164.71(\mathrm{C}-4)$ and $168.37(\mathrm{CON}) ;$ $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.24-1.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2}-1^{\prime \prime}\right.$ and $\left.-2^{\prime \prime}\right), 1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.32 (d, J14.0, $1 \mathrm{H}, \mathrm{H}^{\mathrm{\alpha}}-2^{\prime}$), 2.72 (dd, 7.6 and $14.4,1 \mathrm{H}, \mathrm{H}^{\mathrm{\beta}}-2^{\prime}$), $2.99\left(\mathrm{dd}, J 2.0\right.$ and $\left.10.7,1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}-5^{\prime}\right), 3.41(\mathrm{dd}, J 3.6$ and $10.7,1$ $\left.\mathrm{H}, \mathrm{H}^{\mathrm{b}}-5^{\prime}\right), 3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-3^{\prime \prime}\right), 3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.35$ (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.36\left(\mathrm{~d}, J 7.0,1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.84(\mathrm{~m}, 4 \mathrm{H}, \mathrm{DMT})$, 7.17-7.43 (m, 9 H, DMT), 7.64-7.77 (m, 5 H, Phth, H-6) and 10.03 (s, $1 \mathrm{H}, \mathrm{NH}$); FAB-MS $m / z 731[\mathrm{M}]^{+}$.

1-\{3-O-[2-Cyanoethoxy(diisopropylamino)phosphino]-2-deoxy-5-O-(4,4'-dimethoxytrityl)-3-C-phthalimidopropyl- α-D-erythropentofuranosyl\}thymine 26
Nucleoside 25 ($267 \mathrm{mg}, 0.37 \mathrm{mmol}$) was coevaporated with anhydrous $\mathrm{CH}_{3} \mathrm{CN}\left(3 \times 2 \mathrm{~cm}^{3}\right)$ and dissolved under argon in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$. DIPEA ($0.4 \mathrm{~cm}^{3}, 2.34 \mathrm{mmol}$) was added followed by dropwise addition of 2 -cyanoethyl N, N diisopropylphosphoramidochloridite $\left(0.17 \mathrm{~cm}^{3}, 0.72 \mathrm{mmol}\right)$. After stirring of the mixture for $5 \mathrm{~h}, \mathrm{CH}_{3} \mathrm{OH}\left(0.5 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was diluted with EtOAc (20 cm^{3}) containing triethylamine $\left(0.2 \mathrm{~cm}^{3}\right)$, washed successively with saturated aq. $\mathrm{NaHCO}_{3}\left(3 \times 30 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaCl}\left(2 \times 30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. Purification using silica gel column chromatography ($\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{3} \mathrm{~N}$-petroleum ether, 15:30:5: $50, \mathrm{v} / \mathrm{v} / \mathrm{v} / \mathrm{v}$) followed by precipitation in light petroleum (30 cm^{3}) at $-20^{\circ} \mathrm{C}$ [after re-dissolution in anhydrous toluene (1 cm^{3})] afforded compound 26 as a solid ($141 \mathrm{mg}, 41 \%$); $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 140.78$ and 140.90.

Synthesis of oligonucleotides

The synthesis of ODNs was carried out on a $0.2 \mu \mathrm{~mol}$ scale (5 $\mu \mathrm{mol}$ amidite per cycle, Pharmacia Primer Support ${ }^{\mathrm{TM}}$) using compounds 16a, 16b, 26, aT-cyanoethylphosphoramidite and commercial β T-cyanoethylphosphoramidite. The synthesis followed the regular protocol for the DNA synthesizer. For the modified phosphoramidites the coupling time was increased from 2 to 24 min and the cycle was repeated twice. The ODNs were removed from the support and deblocked by treatment with conc. ammonia at room temp. for 72 h . Purification and detritylation was achieved on Cruachem oligonucleotide purification cartridges using the standard procedure. The purity of the ODNs was confirmed by analytical anion-exchange HPLC. The solvent systems consisting of $10 \mathrm{~mm} \mathrm{NaOH}(\mathrm{A})$ and 10 mm $\mathrm{NaOH}+1.8 \mathrm{~m} \mathrm{NaCl}(\mathrm{B})$ were used in the following order: 10 min linear gradient of $25-30 \% \mathrm{~B}$ in A, 40 min linear gradient of $30-45 \%$ B in A, $1 \mathrm{~min} 45-100 \%$ B in A, $1 \mathrm{~min} 100 \% \mathrm{~B}, 1 \mathrm{~min}$ linear gradient of $100-25 \%$ B in A. Flow rate $1.67 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. The purified ODNs eluted as one peak after approximately 14 min for products $\mathbf{H}-\mathbf{L}$ and after approximately 20 min for products $\mathbf{A - G}$.

Melting experiments

The melting experiments were carried out in medium salt buffer, 1 mm ethylenediaminetetra-acetic acid (EDTA), 10 mm $\mathrm{Na}_{2} \mathrm{HPO}_{4}, 140 \mathrm{~mm} \mathrm{NaCl}, \mathrm{pH} 7.2$ at a concentration of 2 nmol for each strand. The increase in absorbance at 260 nm as a function of time was recorded while the temperature was raised from 10 to $60^{\circ} \mathrm{C}$ at a rate of $1{ }^{\circ} \mathrm{C}$ per min. The melting temperature was determined as the maximum of the first-derivative plot of the 260 nm transition.

Acknowledgements

The Danish Natural Science Research Council is thanked for financial support.

References

1 R. W. Wagner, Nature, 1994, 372, 333.
2 E. Uhlmann and A. Peyman, Chem. Rev., 1990, 90, 543.
3 S. L. Beaucage and R. P. Iyer, Tetrahedron, 1993, 49, 6123.
4 C. K. Chu, B. Doboszewski, W. Schmidt and G. V. Ullas, J. Org. Chem., 1989, 54, 2767; J. Fiandor and S. Y. Tam, Tetrahedron Lett., 1990, 31, 597.
5 P. Nielsen, K. Larsen and J. Wengel, Acta Chem. Scand., 1996, 50, 1030.

6 P. N. Jørgensen and J. Wengel, in Studies in Natural Products Chemistry, 19, ed. Atta-ur-Rahman, in the press, and references cited therein.

7 A. Dan, Y. Yoshimura, A. Ono and A. Matsuda, Bioorg. Med. Chem. Lett., 1993, 3, 615; M. Manoharan, C. J. Guinosso and P. D. Cook, Tetrahedron Lett., 1991, 32, 7171; M. Manoharan, K. L. Tivel, L. K. Andrade and P. D. Cook, Tetrahedron Lett., 1995, $\mathbf{3 6}$, 3647; H. Maag, B. Schmidt and S. J. Rose, Tetrahedron Lett., 1994 35, 6449.
8 P. Nielsen, H. M. Pfundheller and J. Wengel, Chem. Commun., 1997, 825.

9 C. Schmit, M.-O. Bévierre, A. De Masmaeker and K.-H. Altmann, Bioorg. Med. Chem. Lett., 1994, 4, 1969.
10 M. S. Motawia and E. B. Pedersen, Liebigs. Ann. Chem., 1990, 599.
11 K. K. Ogilvie, K. L. Sadana and E. A. Thompson, Tetrahedron Lett., 1974, 2861; K. K. Ogilvie, Can. J. Chem. 1973, 51, 3799.
12 P. J. Garegg and B. Samuelsson, Carbohydr. Res., 1978, 67, 267; P. J. Garegg and L. Moron, Acta Chem. Scand., Ser. B, 1979, 33, 453.
13 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.

14 K. Augustyns, J. Rozenski, A. Van Aerschot, G. Janssen and P. Herdewijn, J. Org. Chem., 1993, 58, 2977.
15 C. Gagnor, J.-R. Bertrand, S. Thenet, M. Lemaître, F. Morvan, B. Rayner, C. Malvy, B. Lebleu, J.-L. Imbach and C. Paoletti, Nucleic Acids Res., 1987, 15, 10419.
16 F. Morvan, B. Rayner, J.-L. Imbach, S. Thenet, J.-R. Bertrand, J. Paoletti, C. Malvy and C. Paoletti, Nucleic Acids Res., 1987, 15, 3421.
17 G. H. Hakimelahi, Z. A. Proba and K. K. Ogilvia, Can. J. Chem., 1982, 60, 1106.

18 U. Séquin and Ch. Tamm, Helv. Chim. Acta, 1972, 55, 1196.
19 M. Okabe, R.-C. Sun, S. Y.-K. Tam, L. J. Todaro and D. L. Coffen, J. Org. Chem., 1988, 53, 4780; K. C. Schneider and S. A. Benner, Tetrahedron Lett., 1990, 31, 335.
20 L. J. McBride and M. H. Caruthers, Tetrahedron Lett., 1983, 24, 245; N. D. Sinha, J. Biernat and H. Köster, Tetrahedron Lett., 1983, 24, 5843.
21 O. Mitsunobu, Synthesis, 1981, 1.
22 U. Pieles, W. Zürcher, M. Schär and H. E. Moser, Nucleic Acids Res., 1993, 21, 3191.
23 M. L. Svendsen, J. Wengel, O. Dahl, F. Kirpekar and P. Roepstorff, Tetrahedron, 1993, 49, 11341.
24 K. Bjergårde and O. Dahl, Nucleic Acids Res., 1991, 19, 5843.
25 L. H. Koole, H. M. Buck, J.-M. Vial and J. Chattopadhyaya, Acta Chem. Scand., 1989, 43, 665.
26 R. E. Dickerson, H. R. Drew, B. N. Conner, R. M. Wing, A. V. Fratini and M. Kopka, Science, 1982, 216, 475.
27 P. N. Jørgensen, P. C. Stein and J. Wengel, J. Am. Chem. Soc., 1994, 116, 2231.

Paper 7/03173D
Received 8th May 1997
Accepted 25th June 1997

[^0]: \dagger Present address: Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark

[^1]: \ddagger Minor anomer.

